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a b s t r a c t 

In this paper, we aim to predict conversion and time-to-conversion of mild cognitive impairment (MCI) 

patients using multi-modal neuroimaging data and clinical data, via cross-sectional and longitudinal stud- 

ies. However, such data are often heterogeneous, high-dimensional, noisy, and incomplete. We thus pro- 

pose a framework that includes sparse feature selection, low-rank affinity pursuit denoising (LRAD), and 

low-rank matrix completion (LRMC) in this study. Specifically, we first use sparse linear regressions to 

remove unrelated features. Then, considering the heterogeneity of the MCI data, which can be assumed 

as a union of multiple subspaces, we propose to use a low rank subspace method (i.e., LRAD) to denoise 

the data. Finally, we employ LRMC algorithm with three data fitting terms and one inequality constraint 

for joint conversion and time-to-conversion predictions. Our framework aims to answer a very important 

but yet rarely explored question in AD study, i.e., when will the MCI convert to AD? This is different 

from survival analysis, which provides the probabilities of conversion at different time points that are 

mainly used for global analysis, while our time-to-conversion prediction is for each individual subject. 

Evaluations using the ADNI dataset indicate that our method outperforms conventional LRMC and other 

state-of-the-art methods. Our method achieves a maximal pMCI classification accuracy of 84% and time 

prediction correlation of 0.665. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Alzheimer’s disease (AD) ( Association et al., 2016, 2017 ) is the

most prevalent dementia and is commonly associated with pro-

gressive memory loss and cognitive decline. It is incurable and

requires attentive care, thus imposing significant socio-economic

burden on many nations. It is thus vital to detect AD in its earli-

est stage before its onset for possible therapeutic treatment. The

prodromal stage of AD, called mild cognitive impairment (MCI),

is characterized by mild but measurable decline of memory and
∗ Corresponding author. 

E-mail addresses: khthung@email.unc.edu (K.-H. Thung), dgshen@med.unc.edu 

(D. Shen). 
∗∗ Data used in preparation of this article were obtained from the Alzheimer’s Dis- 

ease Neuroimaging Initiative (ADNI) database ( adni.loni.ucla.edu ). As such, the in- 

vestigators within the ADNI contributed to the design and implementation of ADNI 

and/or provided data but did not participate in analysis or writing of this report. 

A complete listing of ADNI investigators can be found at: http://adni.loni.ucla.edu/ 

wp-content/uploads/how _ to _ apply/ADNI _ Acknowledgement _ List.pdf . 
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ognition. Studies show that some MCI patients will recover over

ime, but more than half will progress to dementia within five

ears ( Gauthier et al., 2006 ). MCI patients that will progress to AD

re retrospectively categorized as progressive MCI (pMCI) patients,

hereas those who remain stable as MCI are categorized as stable

CI (sMCI). In this paper, we focus on differentiating pMCI from

MCI patients and predicting the time to the event of AD conver-

ion. 

Biomarkers based on different modalities, such as magnetic res-

nance imaging (MRI), positron emission topography (PET), and

erebrospinal fluid (CSF), have been widely studied for the predic-

ion of AD progression ( Zhang et al., 2012; Li et al., 2015; Weiner

t al., 2013; Zhan et al., 2015; Li et al., 2014; Adeli-Mosabbeb

t al., 2015; Huang et al., 2015; Zhu et al., 2015; 2016; Zhou et al.,

017; Zhu et al., 2017; Thung et al., 2016, 2017 ). The Alzheimer’s

isease neuroimaging initiative (ADNI) collects these data longi-

udinally from subjects ranging from cognitively normal elderly

ubjects to AD patients in an effort to improve prediction of AD

rogression. However, these data are incomplete due to subject

https://doi.org/10.1016/j.media.2018.01.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2018.01.002&domain=pdf
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ropouts and unacquired modalities associated with factors such

s study design and cost constraints. The easiest and most pop-

lar way to deal with missing data is by discarding incomplete

amples ( Zhang et al., 2012 ), which will however decrease sam-

le size and statistical power. An alternative is to impute the miss-

ng data, via methods such as k -nearest neighbor (KNN), expec-

ation maximization (EM), or low-rank matrix completion (LRMC)

 Troyanskaya et al., 2001; Zhu et al., 2011; Candès and Recht, 2009;

anroma et al., 2014 ). These imputation methods, however, do not

erform well on data with blocks of missing values ( Thung et al.,

014; Yuan et al., 2012; Yu et al., 2014 ), causing erroneous predic-

ion outcomes. 

To avoid the need for imputation, Yuan et al. (2012) proposed a

ethod, called incomplete multiple source feature learning (iMSF),

o first divide the data into disjoint subsets of complete data, and

hen jointly learn the classification or prediction models for these

ubsets. Through joint feature learning, iMSF enforces all subset

lassifiers to use a common set of features for each modality. How-

ver, this will cause samples with less number of modalities to

ave limited number of features when making prediction. In ad-

ition, using disjoint subsets of data will also cause small sample

ize issue for each prediction model ( Xiang et al., 2014 ). 

On the other hand, the method proposed by

oldberg et al. (2010) imputes the missing feature values and

arget values (e.g., diagnostic status and clinical scores) simultane-

usly using a low-rank assumption. All samples, including those

ith missing feature values, and their corresponding targets are

oncatenated into a matrix and the unknown values are then

mputed via LRMC. This approach is able to make use of the

ncomplete samples more effectively. Thung et al. (2014) improved

he efficiency and effectiveness of this method by performing

eature and sample selection before matrix completion. 

However, all these methods do not explicitly take into account

he heterogeneous nature of the data. Recent studies ( Markesbery,

010; Nettiksimmons et al., 2013 ) show that there is signifi-

ant biological heterogeneity among ADNI amnestic MCI patients.

ome MCI subjects are biologically similar to normal aging sub-

ects, while some have the characteristic AD’s pathologies, and

ome have other various late-life neurodegenerative pathologies

 Nettiksimmons et al., 2013; Rahimi and Kovacs, 2014 ). Post-

ortem brain studies ( Markesbery, 2010; Petersen et al., 2006;

icha et al., 2006; Cairns et al., 2015 ) on deceased MCI and AD sub-

ects also confirm that most of them developed a mixture of neu-

odegenerative diseases. The comorbidities (other than AD) include

rgyrophilic grain dementia, Lewy body dementia, Parkinson dis-

ase, hippocampal sclerosis, and frontotemporal dementia. These

tudies imply that not all MCI subjects are affected by the same

D pathologies. 

In this study, we utilize longitudinal multi-modality data

o capture the complexity and heterogeneity of AD pathology.

he data are heterogeneous, prone to noise, and incomplete. To

eal with these problems, we recently proposed an approach

 Thung et al., 2015b ) to cluster the data into subsets using low-

ank representation (LRR) ( Liu et al., 2013 ) and perform LRMC on

he samples on each of these subsets separately, to improve the

verall classification performance. This approach assumes that the

ata resides in a union of several low-dimensional subspaces, each

panned by a data subset, and tries to recover these subspaces

hrough LRR. Each sample is assumed to reside in one of the

ubspaces. However, in reality, the samples can potentially reside

cross multiple subspaces ( Markesbery, 2010 ). In addition, data

lustering also reduces the number of samples associated with

ach subspace and hence may reduce the effectiveness of the pre-

iction model. We have also demonstrated in ( Thung et al., 2015b )

hat the prediction performance of the LRMC algorithm can also
M  
e improved by using a denoised version of the data, which can

e obtained via LRR. 

In this paper, we propose to use low-rank affinity pursuit de-

oising (LRAD) in combination with the sparse feature selection

FS) to improve the prediction power of LRMC for incomplete,

oisy, and heterogeneous multi-modal data. More specifically, we

se incomplete low-rank representation (ILRR) ( Liu et al., 2013; Shi

t al., 2014 ) for LRAD, where the samples are denoised by repre-

enting them using their neighboring points. In addition, we use

asso ( Tibshirani, 1996; Liu et al., 20 09a, 20 09b; Liu and Ye, 20 09 )

o select the most discriminative features for use in prediction.

astly, we utilize LRMC to predict the output targets, which con-

ist of diagnostic labels (i.e., pMCI/sMCI) and conversion times. We

ested our framework using longitudinal and cross-sectional multi-

odality MRI data and confirm that the proposed method outper-

orms the conventional LRMC method and other state-of-the-art

ethods. It is also important to note that there are many hyper-

arameters associated with LRMC. In this paper, we propose to use

 Bayesian optimization framework to automatically select the best

et of hyper-parameters. The contributions of this paper are three-

old: 

1. We propose a framework for pMCI diagnosis and conversion

time prediction using longitudinal multi-modal data, which

can be incomplete and noisy. In comparison, previous stud-

ies in the literature ( Section 2.1 ) were often focusing on us-

ing either multi-modal or longitudinal data for pMCI diagno-

sis. Moreover, unlike our method which is applicable to incom-

plete datasets, most of the previous methods are only applica-

ble to datasets without missing data. More importantly, time-

to-conversion predictions in the literature are mostly used for

global analysis based on statistical methods, while our study is

one of the few non-statistical methods that addresses this is-

sue at individual level. To the best of our knowledge, our study

is the first to predict both the pMCI diagnosis and time-to-

conversion jointly. To this end, we propose to employ sparse

feature selection to remove outlier features, ILRR to denoise the

data, and finally LRMC to predict the target outputs. 

2. We propose a matrix completion algorithm that is able to pre-

dict the conversion time even when some of the data are miss-

ing and censored. The missing data issue is due to missing

modalities at certain time points for some subjects. In addition,

our sMCI data is censored, i.e., we are unsure whether the sMCI

subject will progress to AD if we increase the monitoring period

indefinitely. Conventional linear regression models are not ap-

plicable to censored data, while the conventional methods that

work on these data ( Section 2.2 ) only provide the “probability”

of conversion. To this end, we design an LRMC algorithm with

three data fitting terms, one for the input features, one for the

diagnostic labels (binary targets), and one for the conversion

time (continuous-valued targets), along with an additional in-

equality constraint. Our modified matrix completion algorithm

enables us to predict the conversion time for the censored data

(i.e., sMCI), by constraining their predicted values to be at least

more than a specific value. 

3. We employ a Bayesian optimization scheme to automatically

select the optimal hyper-parameters for LRMC. 

. Related works 

In this section, we briefly discuss the related previous research

orks. 

.1. MCI-to-AD conversion prediction 

Many works ( Wei et al., 2016; Stoub et al., 2004 ) use

RI data for MCI-to-AD conversion predictions. For example,
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2 http://adni.loni.ucla.edu . 
Stoub et al. (2004) used MRI-derived entorhinal volume for pre-

diction. Wei et al. (2016) used MRI and structural network features

to predict MCI-to-AD conversion. They employed sparse linear re-

gression with stability selection to select features and then used

support vector machine (SVM) for classification. They used data

at baseline, and 6, 12, and 18 months before diagnosis of prob-

able AD for prediction. The best classification accuracy they ob-

tained was 76% using the data 6 months prior to AD diagnosis.

Misra et al. (2009) used longitudinal MRI data to extract brain

temporal changes for detecting MCI-to-AD conversion. However,

this study used follow-up data of very short period (i.e., up-to 15

months) with unbalanced data at each cohort (i.e., pMCI and sMCI).

Some works used multimodal data (e.g., MRI, PET, CSF, demo-

graphics, genetic data) for conversion prediction ( Davatzikos et al.,

2011; Cheng et al., 2015b, 2015a; Dukart et al., 2016; Moradi et al.,

2015 ). Cheng et al. (2015b ), for example, used MRI, PET, and CSF

data in their studies. They employed transfer learning to borrow

information from other related cohorts, i.e., AD and NC, to help se-

lect the features from MCI cohorts for MCI-to-AD conversion pre-

diction, achieving 79% prediction accuracy. In another similar work,

Cheng et al. (2015a ) employed multimodal manifold-regularized

transfer learning for feature selection, and achieved 80% accu-

racy in conversion prediction. Xu et al. (2016) used modality-

weighted sparse representation-based classification method to

combine data from MRI, fluorodeoxyglucose PET, and florbetapir

PET, and achieved 82.5% prediction accuracy. They defined pMCI

as MCI subjects that progressed to MCI within 36 months, and de-

fined the remaining MCI subjects as sMCI. However, such definition

results in highly unbalanced cohorts (i.e., 27 pMCI and 83 sMCI).

Korolev et al. (2016) used MRI, plasma, and clinical biomarkers

to predict MCI-to-AD conversion via probabilistic pattern classifi-

cation, and achieved 80% accuracy. Moradi et al. (2015) used MRI

and clinical biomarkers for MCI-to-AD conversion prediction, and

achieved an AUC of 0.90 using regularized logistic regression to se-

lect features and then using low density separation (LDS) as the

classifier. 

Most of these methods are only applicable for datasets without

missing data. In contrast, our study uses longitudinal multimodal

data that can be incomplete. In addition, all of the previous stud-

ies mentioned above are focused on MCI-to-AD conversion predic-

tion, which only answer the question on “who” will progress to

AD. AD studies that predicted time to conversion, which answer

the question on “when” the conversion will occur, are relatively

rare. Conversion time prediction is important, as it gives us use-

ful information about the disease progression rate and the sever-

ity of the disease, which may affect the individual treatment plan.

In addition, knowing when the patient will progress to AD is also

much more meaningful and clinically relevant (also more challeng-

ing) than just predicting whether the patient will progress to AD.

Our work explores both problems. 

2.2. Survival analysis 

Conversion time prediction in this study is similar to survival

analysis ( Miller Jr, 2011; Liu et al., 2017; Oulhaj et al., 2009 ). Sur-

vival analysis computes the probability of event occurrence (e.g.,

disease status conversion) at future time points. For example,

Oulhaj et al. (2009) used interval-censored survival analysis statis-

tical methods to identify baseline cognitive tests that can best pre-

dict the time of conversion to MCI (from NC). Liu et al. (2017) used

independent analysis and Cox model for their MCI-to-AD survival

analysis study. Michaud et al. (2017) , on the other hand, employed

competing-risks survival regression models and Cox proportional

hazards models to investigate how the demographics and clinical

characteristics are related to AD conversion time. 
Despite the similarity between conversion time prediction (as

n our work) and survival analysis (as in many previous works),

hey actually address different questions. First, survival analysis

ims to predict the probability of AD conversion at different future

ime points, mainly used for global analysis (e.g., comparing sur-

ival times of two groups); conversion time prediction in the cur-

ent work predicts “when” the conversion will occur. As a result,

urvival analysis is generally based on a probability model (e.g.,

ox regression model), whereas conversion time prediction is gen-

rally based on conventional regression models (e.g., least-squares

egression model). Second, both analysis methods are designed for

ifferent types of data. Specifically, survival analysis is designed for

ensored data (where the survival times are unknown or incom-

lete) and uncensored data, whereas conversion time prediction is

enerally only suitable for non-censored data. For our study, the

ime-to-conversion data is censored for sMCI subjects, i.e., we do

ot know whether or when the sMCI subject will progress to AD

f the monitoring time is extended indefinitely. Conventional lin-

ar regression models are unable to address this censored data is-

ue, and thus unable to perform conversion time prediction. How-

ver, our improved matrix completion algorithm is able to address

he censored data issue for the sMCI subjects, by treating the con-

ersion time of sMCI subject as unknown and limiting its time-to-

onversion prediction to be at least a specific value (e.g., maximum

onitoring period). We will discuss our method in greater detail in

ection 4 . 

.3. Low rank subspaces 

It has been investigated in several previous studies that the

ata coming from different classes often lie in multiple low-

imensional subspaces ( Lin et al., 2015b; Elhamifar and Vidal, 2011,

013; Lin et al., 2015a; She et al., 2016 ). Intuitively, this is be-

ause data from each class are often more related with each other

han the data coming from other classes, and hence, the data is

ssumed to reside in a union of a number of lower-dimensional

ubspaces. For instance, the following sentence is directly quoted

rom Elhamifar and Vidal (2011) which is also extended and pub-

ished in Elhamifar and Vidal (2013) : 

“In many problems in signal/image processing, machine learning

and computer vision, data in multiple classes lie in multiple low-

dimensional subspaces of a high-dimensional ambient space.”

For our application, where the data are from the MCI cohort of

he ADNI dataset, there are samples with different survival times

time to convert to AD). This is similar to data with different

classes” and thus it is intuitive to assume that the data is a union

f low-rank subspace. In this study, however, we are not using low

ank subspace algorithm for clustering, but we take advantage of

his concept for denoising the data. 

. Materials and preprocessing 

.1. Materials 

In this study, we are interested in predicting two target out-

uts, i.e., the pMCI/sMCI class labels and the conversion times

n months, using multi-modal data from the ADNI 2 dataset. The

ulti-modal data used in this study include T1 weighted MR scans,

uorodeoxyglucose PET (FDG-PET, PET for short for the rest of

he manuscript) scans, and cognitive clinical scores (e.g., Mini-

ental State Exam (MMSE), Clinical Dementia Rating (CDR), and

lzheimer’s Disease Assessment Scale (ADAS)). Using these multi-

odal data at a single time point and multiple time points, we

http://adni.loni.ucla.edu
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Table 1 

Demographic information of subjects involved in this study. (Edu.: Educa- 

tion; std.: Standard Deviation). 

No. of subjects Gender (M/F) Age (years) Edu. (years) 

pMCI 65 49/16 75.3 ± 6.7 15.6 ± 3.0 

sMCI 53 37/16 76.0 ± 7.9 15.5 ± 3.0 

Total 118 86/32 – –
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erformed cross-sectional and longitudinal study, respectively, in

his paper. For cross-sectional study, we used different combina-

ions of modalities at 18th month for pMCI and conversion time

redictions. For longitudinal study, we examined our prediction

odel using different combinations of modalities at 18th month

nd one additional time point (i.e., baseline, 6th month or 12th

onth). For both the cross-sectional and longitudinal studies, we

sed the same set of subjects with the same assignment of disease

tatus labels (i.e., pMCI and sMCI), for easier comparison of results

etween these two studies. More specifically, we define pMCI sub-

ects as MCI subjects who progressed to AD within the monitoring

eriod from 18th to 60th month, while MCI subjects who remained

table for upto 60th month were labeled as sMCI. We also excluded

CI subjects who progressed to AD on and before 18th month in

his study since it is meaningless to use (longitudinal) data that

ere labeled as AD for pMCI/sMCI prediction. Based on the defini-

ion and exclusion criteria mentioned above, we have 65 pMCI and

3 sMCI subjects for this study, with their demographics summa-

ized in Table 1 , and their Roster IDs (RIDs) given in the supple-

entary file. As can be seen from the table, there is no significant

ifference in term of education, age and gender distribution be-

ween these two cohorts of data. 

In addition to pMCI and sMCI labels, we also used conversion

ime as another target in our study. However, it is difficult, if not

mpossible, to obtain the “ground truth” of conversion time, as the

onversion, in itself, is a process that does not occur at one sin-

le time point. In addition, ADNI only scans and evaluates the MCI

atients at specific time points after the baseline scan (e.g., 12th,

8th, 24th, 36th month, etc.), where the conversion can occur at

ny time between two scan times. In this work, we estimate the

ground truth” of conversion time as the time period between the

ate of 18th month scan (we used 18th month as the reference)

nd the date of the nearest scan after the conversion had occurred.

hough this is currently the best estimate we can get, this value is

ctually the upper bound of the real conversion time. As the exact

canning dates are used to estimate the “ground truth” of conver-

ion time, the estimated values are not discrete (e.g., 6 months,

2 months, etc., if we use the scanning plan to obtain the conver-

ion time), but rather real continuous values (e.g., 5.7 months, 10.4

onths, etc.). Thus, for this target, we treat the conversion time

rediction as a regression problem. During model evaluation, we

hoose performance measures that are less sensitive to the uncer-

ainty of the noisy “ground truth”. 

.2. Preprocessing and feature extraction 

We use region-of-interest (ROI)-based features from the MRI

nd PET images. Each MRI image was Anterior Commissure – Pos-

erior Commissure (AC–PC) aligned using MIPAV 

3 , corrected for in-

ensity inhomogeneity using the N3 algorithm ( Sled et al., 1998 ),

kull stripped ( Wang et al., 2011 ), tissue segmented ( Zhang et al.,

001 ), and registered to a template ( Kabani, 1998; Shen and Da-

atzikos, 2002; Thung et al., 2014; Xue et al., 20 04, 20 06b, 20 06a ).

ray matter (GM) volumes, normalized by the total intracranial
3 http://mipav.cit.nih.gov . 

c  

i  
olume, were extracted as features from 93 ROIs ( Wang et al.,

011 ). We also affinely aligned each PET image to its correspond-

ng skull stripped MRI image, and used the mean intensity value

f each ROI as feature. 

. The proposed methods 

In this study, we use multi-modal (i.e., MRI, PET, clinical scores)

nd longitudinal data (i.e., data collected at multiple time points)

or classification and regression analysis. These data are heteroge-

eous, high dimensional, possibly incomplete, and could be cor-

upted with noise. To address these issues, we propose a prediction

ramework that consists of three main components: 1) sparse fea-

ure selection (FS), which removes features that are unrelated to

he targets via sparse linear regressions, 2) low-rank affinity pur-

uit denoising (LRAD), which utilizes low-rank representation (LRR)

o denoise the data using neighboring samples in low-rank sub-

pace, and 3) low-rank matrix completion (LRMC), which predicts

he unknown targets (i.e., diagnostic labels and conversion times).

ig. 1 shows an overview of our proposed framework. The opera-

ion details involved in these three components are described in

he following subsections. 

.1. Notation 

We first introduce the notations that will be used to describe

he formulation of the proposed method. We use X ∈ R 

n ×m to de-

ote the feature matrix with n samples of m features. Here, n de-

ends on the number of time points and the number of modali-

ies used. Each sample (i.e., row) in X is a concatenation of fea-

ures from different time points and different modalities (e.g., MRI,

ET and clinical scores). Note that X can be incomplete because

f missing data, due to various reasons described in the introduc-

ion ( Thung et al., 2013, 2014, 2015a, 2015b ). The corresponding

arget matrix is denoted as Y ∈ R 

n ×2 , where the first column is a

ector of labels (1 for pMCI, and −1 for sMCI), and the second col-

mn is a vector of conversion times (e.g., the number of months

o convert to AD). The conversion times associated with the sMCI

amples are unknown, but at least larger than the last monitored

ime. For any matrix M , M j, k denotes its element indexed by ( j, k ),

hereas M j , : and M :, k denote their j th row and k th column, re-

pectively. We denote ‖ M ‖ ∗ = 

∑ 

σi (M ) as the nuclear norm (i.e.,

um of the singular values { σ i } of M ), ‖ M ‖ 1 = 

∑ | M j,k | as the l 1 -

orm, ‖ M ‖ 2 = ( 
∑ 

M 

2 
j,k 

) 1 / 2 as the l 2 -norm, and M 

T as the transpose

f M. I is the identity matrix. 

.2. Feature selection using sparse regression 

Not all the features are related to the disease progression

 Thung et al., 2014; Yuan et al., 2012 ). We perform feature se-

ection to remove features which are unrelated to our prediction

asks. We use lasso with logistic and least square loss functions

 Tibshirani, 1996; Liu et al., 2009b; Liu and Ye, 2009 ) to select fea-

ures that are related to the target outputs. As the data, which is

he concatenation of multiple modalities and time points, is pos-

ibly incomplete, we can not perform the feature selection using

qs. (1) and (2) on the whole dataset directly. We can either use

n advanced feature selection method that works with incomplete

ata, like ( Yuan et al., 2012 ), or perform feature selection on each

roup of complete data separately. We choose the latter as meth-

ds like ( Yuan et al., 2012 ) do not work well when there are too

any groups of data, as in our case. Specifically, we split the in-

omplete data into groups with complete data according to modal-

ties and time points ( Thung et al., 2015b; 2015a ), so that lasso can

http://mipav.cit.nih.gov
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Fig. 1. Overview of the proposed framework, which consists of sparse feature selection, low-rank affinity pursuit denoising (LRAD), and low-rank matrix completion. 
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be applied independently to each group. The two lasso algorithms

used are given as 

min 

β
(i ) 
1 

‖ y − X 

(i ) β
(i ) 
1 ‖ 

2 
2 + γ1 ‖ β

(i ) 
1 ‖ 1 , (1)

min 

β
(i ) 
2 

∑ 

j 

log (1 + exp (−y j X 

(i ) 
j, : 

β
(i ) 
2 )) + γ2 ‖ β

(i ) 
2 ‖ 1 , (2)

where X 

( i ) is the data matrix of the i th group, and β
(i ) 
1 is the sparse

weight vector. y is the target label (first column of Y ), as we are

more interested in the classification task, while y j is the target la-

bel for the j th sample. We use two types of linear regressions to

select features, as our previous study ( Thung et al., 2015a ) showed

that the prediction model that uses two linear regressions is bet-

ter than the model that uses one linear regression. The combined

non-zero values (OR operation) in vectors β
(i ) 
1 and β

(i ) 
2 are used

to select corresponding features in X 

( i ) . The regularizing parame-

ters γ 1 and γ 2 are determined through cross-validation using the

training data. 

4.3. Low-rank affinity pursuit denoising (LRAD) 

ROI-based MRI and PET features can be noisy. In addition, when

features from multiple time points are stacked together, the di-

mensionality of the features is high. Nevertheless, as these features

are highly correlated, the true rank of the data matrix (i.e., a 2D

matrix X , where each row denotes feature vector of a sample) is

low if the noise is removed. Thus, we can use, e.g., a robust princi-

pal component analysis (RPCA) algorithm ( Liu et al., 2013; Candès

et al., 2011; Wright et al., 2009 ), to denoise the data by decompos-

ing the data into two components — the low-rank component and

the sparse noise component. However, as criticized by Vidal (2010) ,

RPCA algorithm denoises the data with the assumption that there

is only one low-rank dimensional subspace in the data, which may

not produce satisfactory results if the data is actually a union of

low-rank subspaces, as could be the case of our data, where the

data is heterogeneous. Following the work in ( Vidal, 2010; Thung

et al., 2015b ), we introduce low-rank affinity pursuit denoising

(LRAD) to denoise data by representing each sample, with possible

missing feature values, using its neighboring samples in the low-

rank subspace, via an incomplete version of low-rank representa-

tion (LRR). LRR has been previously used in various applications,

such as subspace clustering ( Liu et al., 2013 ), subspace segmenta-

tion Liu et al. (2010) , etc ( Zhou et al., 2013; Liu and Yan, 2011 ). In

this work, we introduce a procedure to utilize it for denoising. 

In LRR, the data is decomposed into two components — the

low-rank self-representation data component and the error (or

noise) component. As there are missing feature values in X , we use

incomplete data version of LRR (ILRR) ( Shi et al., 2014 ), which is
iven as: 

min 

 , E , X 
‖ A ‖ ∗ + α‖ E ‖ 1 s.t. X = A X + E , X � = X �, (3)

here X is the completed version of X , which is self-represented

y A X , A ∈ R 

n ×n is the low-rank affinity matrix, E is the error ma-

rix, and α is the regularizing parameter. Each element of A in-

exed by ( i, j ) is an indicator of the similarity between the i th

ample and the j th sample, which are represented by the i th row

nd the j th row of X , respectively. Thus, the i th row of A denotes

he similarity of the i th sample with all other samples in X . A X 

s thus a reconstruction of X , where each row is a linear com-

ination of neighboring rows determined by the A . By imposing

ow-rank constraint on A , A X is a low-rank recovery of X , which

s called the “lowest-rank representation” of X ( Liu et al., 2013 ).

n brief, ILRR gives us a locally compact (low-rank) representation

nd denoised version of the raw data, given as D = A X . Problem

n Eq. (3) is solved using inexact augmented Lagrangian multiplier

ALM), as described in ( Shi et al., 2014 ). Note also that we reg-

larized the error matrix E using the l 1 -norm, as we expect that

he noise is sparse (e.g., the segmentation and registration errors

ould have happened at certain brain regions, causing sparse noise

n ROI-based features). In addition to ‖ E ‖ 1 , we also test our frame-

ork using the l 2 -norm, ‖ E ‖ 2 , which assumes that the data matrix

 is corrupted by Gaussian noise. 

.4. Predictions using low-rank matrix completion (LRMC) 

Assuming a linear relationship between X and Y , the k th tar-

et of Y is given by Y : ,k = Xa k + b k = [ X 1 ] × [ a k ; b k ] , where 1 is a

olumn vector of 1’s, a k is the weight vector, and b k is the off-

et. Assuming that X is low-rank (i.e., each column of X could be

epresented by some other columns in X ), then the concatenated

atrix M = [ X 1 Y ] is also low-rank ( Goldberg et al., 2010 ), i.e.,

ach column of M can be linearly represented by other columns,

r each row of M can be linearly represented by other rows.

ased on this assumption, low-rank matrix completion (LRMC)

 Goldberg et al., 2010; Sanroma et al., 2014; 2015; Thung et al.,

014; Chen et al., 2017 ) can be applied to M to impute the miss-

ng feature values and the target outputs simultaneously by solving

in Z {‖ Z ‖ ∗ | M � = Z �} , where � is the index set of known values

n M , and Z is the completed matrix version of M . In the presence

f noise, the problem can be relaxed as ( Goldberg et al., 2010 ) 

in 

Z 
μ‖ Z ‖ ∗ + 

1 

| �x | L s (Z �x 
, M �x 

) + 

λ1 

| �yl | L l (Z �yl 
, M �yl 

) , (4)

here �yl and �x are the index sets of the known target la-

els and feature values, respectively, while L l (u , v ) = 

∑ 

i log (1 +
xp (−u i v i )) and L s (u , v ) = 

∑ 

i 
1 
2 (u i − v i ) 2 are the logistic loss func-

ion and mean square loss function, respectively. The nuclear norm
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·‖ ∗ in (4) is used as a convex surrogate for matrix rank. Parame-

ers μ and λ1 are the trade-off hyper-parameters that control the

ffect of each term. In our application, there are two targets, i.e.,

he pMCI label and the conversion time, which are binary and con-

inuous, respectively. Thus, we use two separate hyper-parameters

nd data fitting terms, based on these two targets. The LRMC with

hree data fitting terms and one inequality constraint is given as: 

in 

Z 
μ‖ Z ‖ ∗ + 

1 

| �x | L s (Z �x 
, M �x 

) 

+ 

λ1 

| �yl | L l (Z �yl 
, M �yl 

) + 

λ2 

| �yr | L s (Z �yr 
, M �yr 

) , (5) 

.t. Z �yr 
≥ T max , if �yr ∈ Y sMCI . 

here �yr is the index set of know regression targets for conver-

ion time, and μ, λ1 and λ2 are the hyper-parameters. The con-

ersion times of sMCI samples are considered unknown, except we

now that they are at least larger than the last monitored time

oint. Thus, we use the inequality constraint to make sure that

he conversion times of the sMCI samples in the training set are

lways larger than a threshold time point, which we set as 12

onths in addition to the maximum conversion time. When the

ata are z -normalized, this threshold is normalized accordingly. We

olve Eq. (5) using fixed point continuation (FPC) ( Algorithm 1 )

 Ma et al., 2011; Thung et al., 2014 ), which consists of 2 alternat-

ng steps for each iteration. The alternating steps of k th iteration

re given as: 

Algorithm 1: Low-rank matrix completion. 

Data : X tr , X te , y tr 

Result : y te 

1 Hyper-parameters : λ1 , λ2 , μ; 

2 Initialization : τ, ˜ μ, T max , maxiter; 

3 while ˜ μ < μ do 

4 ˜ μ ← max ( ̃  μ/ 4 , μ) ; 

5 for k ← 1 to maxiter do 

6 Evaluate gradient step: G 

k = Z 

k − τg(Z 

k ) � Eqs. (6) & 

(7); 

7 Evaluate shrinkage step: Z 

k +1 = S τ ˜ μ(G 

k ) � Eq. (8); 

8 Evaluate projection based on inequality constraint: 

Z 

k +1 
�yr 

← max (T max , Z 

k +1 
�yr 

) , if �yr ∈ Y sMCI ; 

9 if converge then 

10 break 

11 end 

12 end 

13 end 

1. Gradient step: 

G 

k = Z 

k − τg(Z 

k ) (6)

where τ is the step size and g ( Z 

k ) is the matrix gradient which

is defined as 

g(Z i j ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

λ1 ∣∣�yl 

∣∣ −M i j 

1 + exp (M i j Z i j ) 
, (i, j) ∈ �yl 

1 

| �x | (M i j − Z i j ) , (i, j) ∈ �x 

λ2 

| �yr | (M i j − Z i j ) , (i, j) ∈ �yr 

0 , otherwise . 

(7) 

2. Shrinkage step ( Cai et al., 2010 ): 

Z 

k +1 = S τμ(G 

k ) = U max ( � − τμ, 0) V 

T , (8)
where S ( ·) is the matrix shrinkage operator, U �V 

T is the SVD of

G 

k , and max( ·) is the elementwise maximum operator. 

The value of τ is determined from the data. A minor modifi-

ation of the argument in ( Ma et al., 2011; Goldberg et al., 2010 )

ould reveal that, as long as we choose a non-negative step size

atisfying τ < min (4| �yr |/ λ2 , 4| �yl |/ λ1 , | �x |), the algorithm above

s guaranteed to converge to a global minimum. 

.5. Bayesian hyper-parameter optimization 

The problem in Eq. (5) involves multiple hyper-parameters (e.g.,

, λ1 , λ2 ). The values of these hyper-parameters can be obtained

y cross-validation and grid search. This is, however, time consum-

ng. For example, if we test 6 candidate values for each hyper-

arameter, there would be a total of 6 3 = 216 combinations. If we

est these combinations using 5 fold cross-validation, we will need

o solve Eq. (5) more than 10 0 0 times. It is therefore desirable

o have a more efficient strategy for the hyper-parameter opti-

ization. In this work, we use a Bayesian optimization algorithm

 Bergstra et al., 2011; Thornton et al., 2013; Yogatama and Mann,

014 ) to obtain the best hyper-parameters. In this approach, not

ll the combination of hyper-parameters are tested. Instead, only

yper-parameters that have higher probability of improving the

ross-validation accuracy are evaluated. Specifically, Bayesian opti-

ization first builds a prediction model based on previous records

f hyper-parameters and their corresponding cross-validation ac-

uracies. Using the prediction model, we obtain the posterior pre-

ictive distribution map, which predicts the accuracy distribution

or each point in the hyper-parameters search range. Each point

n the predictive distribution map can be characterized by a mean

nd a standard deviation, which are used to denote the predic-

ion accuracy and information gain (the larger the standard devi-

tion, the less certain of the prediction, and the higher of infor-

ation gain) of this point, respectively. Balancing the information

ain and the exploitation of the prediction accuracy, Bayesian op-

imization arrives at a value via an evaluation function (which is

ommonly called as acquisition function). Finally, the highest point

f the acquisition function is used to choose the hyper-parameter

oint to be evaluated next. Then the whole process of selecting

yper-parameters is repeated until a stopping criterion is fulfilled. 

Algorithm 2: Bayesian hyper-parameter optimization. 

Data : X tr , y tr 

Result : θ
∗

with greatest ψ 

∗

1 Initialization : Randomly select n hyper-parameters and 

evaluate their 5-fold cross validation accuracy values: 

H = 

{(
θi , ψ i 

)
, i = 1 , . . . , n 

}
; 

2 for i ← n + 1 to maxiter do 

3 Find θi by optimizing the acquisition function over GP: 

θi ← argmax θ u ( θ|H) � Algo. 3; 

4 Evaluate ψ i ( θi | X tr , y tr ) � (Expensive computation); 

5 H ← H ∪ ( θi , ψ i ) ; 

6 if no better ψ i is found in 10 consecutive iterations then 

7 stop 

8 end 

9 end 

10 return θ
∗

corresponds to maximum ψ 

Algorithm 2 outlines the Bayesian optimization method used

n this work, called sequential model-based optimization (SMBO)

 Bergstra et al., 2011 ). Let θ denotes a hyper-parameter point,

hich consists of the hyper-parameters (i.e., μ, λ1 , λ2 in (5) ) that

e need to optimize, ψ denote the corresponding cross validation
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i  
accuracy using the training data ( X tr , y tr ), and H = { ( θ, ψ) } de-

notes the historical observation of the hyper-parameters and their

corresponding accuracy values. SMBO performs the following steps

iteratively: 1) Build a model that captures the relationship of θ and

ψ using a Gaussian process; 2) Determine the next promising θ
candidate; 3) Compute ψ based on the selected θ; and 4) Update

H with a new pair of ( θ, ψ) as well as the Gaussian process pre-

diction model. 

Algorithm 3: Gaussian process estimation. 

Data : H = 

{(
θ1: t , ψ 1: t 

)}
, � = set of all θ candidates 

Result : Next θt+1 to evaluate 

1 Initialize kernel parameter. � Eq. (13); 

2 Compute kernel matrix K , k . � Eqs. (10) & (12); 

3 Evaluate mean and variance of ψ( θ) for all θ ∈ �. � Eqs. 

(15) & (16); 

4 Evaluate acquisition function for all θ ∈ �. � Eq. (18); 

5 Output θt+1 that gives maximum expectation improvement. 

� Eq. (18); 

We solve the problem in line 3 of Algorithm 2 by using a

Gaussian Process (GP) prior ( Algorithm 3 ) ( Rasmussen, 2004; Ras-

mussen and Williams, 2006; Bergstra et al., 2011; Thornton et al.,

2013; Snoek et al., 2012 ). GP is an extension of a multivariate

Gaussian distribution to an infinite dimensional stochastic process

( Brochu et al., 2010 ). For each θ, ψ( θ) is assumed to be a sam-

ple from a multivariate Gaussian distribution, which is completely

specified by mean m ( θ) and covariance k ( θ, θ
′ 
) : 

ψ( θ) ∼ GP (m ( θ) , k ( θ, θ
′ 
)) . (9)

There are many choices of covariance function ( Rasmussen and

Williams, 2006; Brochu et al., 2010; Snoek et al., 2012 ). In this

paper, we use the squared exponential covariance function with

isotropic distance measure: 

k ( θi , θ j ) = s 2 1 exp 

(
− 1 

2 s 2 
2 

∥∥θi − θ j 

∥∥2 

)
, (10)

where s 1 and s 2 are the parameters of the covariance function.

Assuming that we have historical observation H = { ( θi , ψ i ) , i =
1 , . . . , t} from previous iterations, we want to determine the next

plausible hyper-parameter point, θt+1 . Let ψ t+1 = ψ( θt+1 ) denotes

the function value at θt+1 , and ψ 1: t = ψ denotes the column vector

of cross validation accuracy values using θ1: t . Then, by the prop-

erties of GP, ψ and ψ t+1 are jointly Gaussian ( Brochu et al., 2010 ):

[
ψ 

ψ t+1 

]
∼ N 

(
0 , 

[
K k 

k 

T k ( θt+1 , θt+1 ) 

])
, (11)

where 

K = 

⎡ 

⎣ 

k ( θ1 , θ1 ) . . . k ( θ1 , θt ) 
. . . 

. . . 
. . . 

k ( θt , θ1 ) . . . k ( θt , θt ) 

⎤ 

⎦ , 

k = [ k ( θt+1 , θ1 ) · · · k ( θt+1 , θt )] T . (12)

The parameters s 1 and s 2 of the covariance function in (10) can be

solved by maximizing the probability of ψ given θ ( Rasmussen and

Williams, 2006 ): 

max 
s = { s 1 ,s 2 } 

log (p( ψ | s , θ1: t )) = max 
s = { s 1 ,s 2 } 

−( ψ ) T K 

−1 ψ − log (| K | ) . (13)

Based on (11) , the posterior predictive distribution is given as

( Brochu et al., 2010; Rasmussen and Williams, 2006 ) 

p(ψ t+1 | θt+1 , H) = N (m ( θt+1 ) , σ
2 ( θt+1 )) , (14)
here 

 ( θt+1 ) = k 

T K 

−1 ψ (15)

2 ( θt+1 ) = k ( θt+1 , θt+1 ) − k 

T K 

−1 k (16)

ased on the computed mean and covariance function, we evaluate

he acquisition function which controls the balance between ex-

loitation (favors θ with higher m ) and exploration (favors θ with

igher σ 2 ). We use expected improvement (EI) as acquisition func-

ion in this study, which is given as ( Brochu et al., 2010 ): 

t+1 = argmax 
θ

E ( max { 0 , ψ t+1 − ψ max }|H) (17)

= argmax 
θ

(m ( θ) − ψ max )	(Z) + σ ( θ) φ(Z) (18)

here Z = 

m ( θ) −ψ max 

σ ( θ) 
, and 	( ·) and φ( ·) are the probability dis-

ribution function (PDF) and cumulative distribution function

CDF) of the standard normal distribution, respectively. The hyper-

arameter point corresponding to the highest value of the acquisi-

ion function is chosen for the next round of hyper-parameter test.

. Results 

We evaluated our proposed framework using both the longitu-

inal and the multi-modal data. We tested different variations of

ur proposed framework, and compared them with two baseline

ethods, as well as two state-of-the-art classification methods that

lso work on incomplete data. In the following, we describe the

aseline methods, the variations of our proposed framework, the

tate-of-the-art methods, the parameter settings, the performance

etrics, and the experimental results. 

.1. The baseline and the proposed methods 

One of the differences of our proposed framework with the pre-

ious LRMC-based prediction model is the inclusion of LRAD de-

oising component, which improves the prediction performance

ignificantly. Fig. 2 shows the flowchart of the comparison base-

ine methods and the proposed methods (i.e., three variations of

he proposed framework). For simplicity, we use abbreviations to

enote the baseline methods and our proposed methods. The top

wo rows in Fig. 2 , denoted as MC and FMC in the figure, are

he baseline methods that do not use LRAD, i.e., LRMC and FS-

RMC (FS-based LRMC), respectively. The following three rows in

ig. 2 , denoted as DMC, FDMC and DFMC in the figure, are the pro-

osed methods that utilize LRAD, i.e., LRAD-MC (no feature selec-

ion), FS-LRAD-MC (sequentially performing FS, LRAD and LRMC),

nd LRAD-FS-MC (sequentially performing LRAD, FS and LRMC), re-

pectively. Note that the sequence of applying the feature selection

nd denoising algorithms will affect the final prediction result. In

S-LRAD-MC, we select features before data denoising, while, in

RAD-FS-MC, we select features after data denoising. While the

eature selection algorithm works better if the data is denoised,

he denoising algorithm also works better if the data is lower in di-

ension and discriminative to the prediction task. Therefore, there

re pros and cons for both approaches, and we include both mod-

ls in our study. In the experimental result section, we will discuss

 simple guiding principle to help us in deciding which approach

o be used in practice. 

.2. The comparison methods 

We compared our method with two state-of-the-art methods –

MSF ( Yuan et al., 2012 ) and Ingalhalikar’s ensemble method (Ingal)
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Table 2 

pMCI classification accuracy using multi-modal data of a single 

time point (18 th month from baseline). An l 1 -norm error term is 

used in ILRR. [ Bold : Best result; ∗: statistically significantly differ- 

ent result compared with the best result (same for all the other 

Tables in this paper)]. 

Data modal Baseline ‖ E ‖ 1 in LRR 

MC FMC DMC FDMC DFMC 

MRI 0.686 ∗ 0.706 ∗ 0.726 0.715 0.720 

MRI + PET 0.686 ∗ 0.700 ∗ 0.724 0.737 0.726 

MRI + Cli 0.764 ∗ 0.770 ∗ 0.827 0.821 0.828 

MRI + PET+Cli 0.745 ∗ 0.768 ∗ 0.792 0.812 0.802 

Table 3 

pMCI classification accuracy using multi-modal data of a single time 

point (18th month from baseline). An l 2 -norm error term is used in 

ILRR. 

Modality Baseline ‖ E ‖ 2 in LRR 

MC FMC DMC FDMC DFMC 

MRI 0.686 ∗ 0.706 0.709 0.718 0.719 

MRI + PET 0.686 ∗ 0.700 ∗ 0.726 0.729 0.724 

MRI + Cli 0.764 ∗ 0.770 ∗ 0.808 0.807 0.809 

MRI + PET+Cli 0.745 ∗ 0.768 ∗ 0.778 ∗ 0.800 0.787 
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 Ingalhalikar et al., 2012 ). We made some modifications to both al-

orithms so that they can be applied to our dataset. 

1. iMSF : iMSF is a multi-task learning algorithm where each task

is dedicated to the mapping of one data subset to its corre-

sponding target vector. The incomplete dataset is first divided

into several disjoint data subsets, each of which is the input for

one learning task. The mappings of the subsets to their targets

are learned jointly. One of the limitations of this algorithm is

the limited number of samples in each disjoint subset. There-

fore, we make some modifications to iMSF to use overlapped

data subsets for each learning task. This modification greatly in-

creases the number of samples in each data subset, and thus

improves the performance of iMSF. 

2. Ingalhalikar’s ensemble model ( Ingalhalikar et al., 2012 ): This al-

gorithm uses an ensemble classification technique to fuse de-

cisions from multiple classifiers constructed using data subsets,

obtained similarly as ( Thung et al., 2013 ). The algorithm groups

the data into subsets, selects features using signal-to-noise ra-

tio coefficient filter ( Guyon and Elisseeff, 2003 ), performs clas-

sification using each data subset based on linear discriminant

analysis (LDA), and fuses all classification results into a sin-

gle result. The decisions are fused using weighted averaging

by assigning a weight to the decision of each classifier based

on its training classification error. We also implemented a re-

gression ensemble model, where we build a sparse regression

model for each data subset and fuse the regression outputs us-

ing weighted averaging. 

.3. Hyper-parameters and performance metrics 

For our method, we use a small value α = 0 . 005 for ILRR in

3) . The hyper-parameters γ 1 and γ 2 in feature selection are de-

ermined through 5-fold cross validation using only the training

ata of each fold. The parameters μ, λ1 , and λ2 of LRMC are de-

ermined using Bayesian optimization as LRMC is more time con-

uming due to the computation of singular value thresholding. The

yper-parameters of iMSF and Ingalhalikar’s fusion methods are

etermined using 5-fold cross-validation, since they both involve

nly one hyper-parameter. 

For the classification task involving prediction of diagnostic la-

els, we use accuracy (ACC) and Area Under the Receiver operator

urve (AUC) as the performance metrics. For the regression task in-

olving prediction of MCI conversion time, we choose performance

etrics that are less sensitive to the uncertainty or noise in the

ground truth” of conversion time (please refer to Section 3.1 ), i.e.,

earson correlation coefficient (PCC) and Spearman rank-order cor-

elation coefficient (SROCC). PCC measures the prediction accuracy

nd SROCC measures the prediction monotonicity. In addition, we

lso include coefficient determination to measure how well future

amples are likely to be predicted by the model. For all the perfor-

ance metrics, higher values correspond to better predictions. 

.4. Cross-sectional study: prediction of diagnostic labels using 

ulti-modal data and single time point data 

Figs. 3 and 4 show respectively the pMCI classification accura-

ies and AUCs using different combinations of multi-modal data of

ime point T 4 = 18 th month. To show the efficacy of each compo-

ent in the proposed framework, we report the results given by

ifferent combinations of the components, i.e., DMC, DFMC and

DMC in Fig. 2 , which respectively represents LRAD-MC, FS-LRAD-

C, and LRAD-FS-MC. LRMC and FS-LRMC, represented by MC

nd FMC for convenience, are the baseline LRMC methods with-

ut LRAD components. More specifically, LRMC and FS-LRMC are

he matrix completion algorithms using the original and feature re-

uced matrices, respectively. Their results are denoted by the blue
oxes in Fig. 3 . On the other hand, the red boxes in Fig. 3 are used

o denote the results of the proposed methods that contain LRAD,

.e. ,LRAD-MC, FS-LRAD-MC, and LRAD-FS-MC, represented by DMC,

DMC, and DFMC, respectively. 

It can be observed from Fig. 3 that the LRAD improves the di-

gnostic accuracies (i.e., the red boxes are generally higher than

he blue boxes). Generally, when LRAD is employed after feature

election, we observe some improvements (comparing FMC with

DMC), especially for MRI+PET, MRI+Cli, and MRI+PET+Cli. In con-

rast, when feature selection is employed after LRAD, the improve-

ent is not obvious (comparing DMC with DFMC), since using

RAD alone has already significantly improved the accuracy (com-

are MC with DMC). However, performing feature selection after

RAD can reduce the computation cost because LRMC is applied

n a smaller matrix. Similar conclusions can be drawn based on

UC (see Fig. 4 ). 

.5. Cross-sectional study: influence of regularization 

We evaluated the effects of two types of regularization, i.e.,

he l 1 -norm and the l 2 -norm, which make different assumptions

bout the data noise. For the l 1 -norm, the data are assumed to

e corrupted by sparse noise, which could be caused by any of

he preprocessing steps, e.g. , segmentation or ROI alignment errors.

or the l 2 -norm, the data are assumed to be corrupted by Gaus-

ian noise. Tables 2 and 3 show the pMCI/sMCI classification re-

ults using multi-modal data of time point T 4 , with LRAD using

n l 1 -norm ( ‖ E ‖ 1 ) or an l 2 -norm ( ‖ E ‖ 2 ) error term. Both tables

how that the prediction of LRMC improves with LRAD. We fur-

her perform paired t -test between the best result and the other

esults in each category, and mark the statistically significant re-

ults ( p < 0.05) with asterisks ( ∗). Comparing the results from both

ables, the l 1 -norm gives greater improvement than the l 2 -norm,

mplying that the former gives a better denoising outcome. 

.6. Longitudinal study: prediction of diagnostic labels using 

ulti-modal and longitudinal data 

Table 4 shows the results using multi-modal and longitudinal

ata, when the l 1 -norm error term is used in LRR. Four time points

re used in this experiment, namely time point 1, 2, 3 and 4, corre-

ponding to the data acquired at baseline, 6th month, 12th month,
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Fig. 2. Flow chart of the proposed methods in comparison with the baseline methods. The two baseline methods are LRMC and FS-LRMC, which are respectively abbre- 

viated as MC and FMC. The proposed methods that utilize low-rank affinity pursuit denoising (LRAD) are LRAD-MC, FS-LRAD-MC, and LRAD-FS-MC, which are respectively 

abbreviated as DMC, FDMC, and DFMC. 

Fig. 3. Boxplots of pMCI classification accuracies using different combinations of modalities. MC, FMC, DMC, FDMC, and DFMC denote the abbreviations used for LRMC, 

FS-LRMC, LRAD-MC, FS-LRAD-MC, and LRAD-FS-MC, respectively (as shown in Fig. 2 ). Each boxplot summarizes the results of 10 repetitions of 10-fold cross validation. The 

blue and the red boxes denote the results given by the LRMC without and with the LRAD, respectively. The boxes with darker colors are the results given by the LRMC with 

feature selection. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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and 18th month, respectively. Time point 4 ( T 4 ) is used as our ref-

erence time point since it is the latest time point and gives us

the most current state of the subject. As shown in our previous

work ( Thung et al., 2015a, 2015b ), predictions using longitudinal

data with 2 time points are generally better than using one time

point. Hence, we test our method using 2 time points, i.e., the ref-

erence time point ( T 4 ) plus an additional historical time point data.
or example, in Table 4 , T 4, 1 indicates that the data of T 4 and T 1 
re used. From the table, it can be seen that LRAD improves pre-

iction performance, for almost all combinations of modalities and

ime-points. The only case where the proposed method performs

lightly worse than the baseline is MRI+PET+Cli- T 4, 3 . The differ-

nce is, however, not statistically significant. The highest accuracy

chieved by the proposed method is 84.0% for the case of MRI+Cli-
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Fig. 4. Boxplots of pMCI classification AUC using different combinations of modalities. 

Table 4 

Classification accuracy using longitudinal and multi-modal data. An l 1 -norm error 

term is used in LRAD. 

Modality Time Baseline ‖ E ‖ 1 in LRAD 

points MC FMC DMC FDMC DFMC 

MRI T 4 0.686 ∗ 0.706 ∗ 0.726 0.715 0.720 

T 4, 1 0.713 ∗ 0.716 ∗ 0.748 0.743 0.756 

T 4, 2 0.702 ∗ 0.694 ∗ 0.734 0.719 0.729 

T 4, 3 0.706 ∗ 0.698 ∗ 0.727 0.731 0.728 

MRI + PET T 4 0.686 ∗ 0.700 ∗ 0.724 0.737 0.726 

T 4, 1 0.688 ∗ 0.701 ∗ 0.711 0.720 0.723 

T 4, 2 0.682 ∗ 0.699 0.665 ∗ 0.708 0.679 ∗

T 4, 3 0.705 0.714 0.721 0.702 0.720 

MRI + Cli T 4 0.764 ∗ 0.770 ∗ 0.827 0.821 0.828 

T 4, 1 0.790 ∗ 0.791 ∗ 0.840 0.805 ∗ 0.839 

T 4, 2 0.771 ∗ 0.773 ∗ 0.803 0.802 0.807 

T 4, 3 0.809 ∗ 0.809 ∗ 0.832 0.826 0.825 

MRI + PET + Cli T 4 0.745 ∗ 0.768 ∗ 0.792 0.812 0.802 

T 4, 1 0.765 0.760 ∗ 0.753 ∗ 0.777 0.755 ∗

T 4, 2 0.730 ∗ 0.759 0.736 ∗ 0.767 0.757 

T 4, 3 0.788 ∗ 0.808 0.789 0.796 0.800 
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Table 5 

Classification accuracy using longitudinal and multi-modal data. An l 2 -norm error 

term is used in LRAD. 

Modality Time Baseline ‖ E ‖ 2 in LRAD 

points MC FMC DMC FDMC DFMC 

MRI T 4 0.686 ∗ 0.706 ∗ 0.709 0.718 0.719 

T 4, 1 0.713 ∗ 0.716 ∗ 0.734 0.738 0.740 

T 4, 2 0.702 ∗ 0.694 ∗ 0.723 0.725 0.723 

T 4, 3 0.706 ∗ 0.698 ∗ 0.716 0.728 0.726 

MRI + PET T 4 0.686 ∗ 0.700 ∗ 0.726 0.729 0.724 

T 4, 1 0.688 ∗ 0.701 ∗ 0.699 ∗ 0.721 0.706 

T 4, 2 0.682 ∗ 0.699 ∗ 0.682 ∗ 0.722 0.700 ∗

T 4, 3 0.705 0.714 0.703 0.718 0.716 

MRI + Cli T 4 0.764 ∗ 0.770 ∗ 0.808 0.807 0.809 

T 4, 1 0.790 ∗ 0.791 ∗ 0.820 0.800 ∗ 0.821 

T 4, 2 0.771 ∗ 0.773 ∗ 0.798 0.790 ∗ 0.802 

T 4, 3 0.809 ∗ 0.809 ∗ 0.822 0.826 0.816 

MRI + PET + Cli T 4 0.745 ∗ 0.768 ∗ 0.778 0.800 0.787 

T 4, 1 0.765 0.760 ∗ 0.769 0.782 0.767 

T 4, 2 0.730 ∗ 0.759 0.743 ∗ 0.770 0.743 ∗

T 4, 3 0.788 ∗ 0.808 0.798 0.798 0.809 
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 4, 1 . Similar observations can be made when the l 2 -norm error

erm is used in LRAD (See Table 5 ), even though the l 1 -norm is

enerally better than the l 2 -norm in this application. 

.7. Cross-sectional study: prediction of conversion time using 

ulti-modal single time point data 

Figs. 5 and 6 show respectively the PCC and SROCC results

omputed between the predicted conversion time and the ground-

ruth conversion time, using different combinations of multi-modal

ata of the reference time point. As shown in both figures, the per-

ormance of LRMC has been significantly improved with LRAD and

eature selection. The best PCC of 0.665, which is about 10% higher

han the original LRMC method, is achieved when using MRI data
nd clinical scores with the proposed framework LRAD-FS-LRMC.

imilar results can be observed for coefficient determination (or R 2 

cores), as shown in Fig. 7 . 

.8. Longitudinal study: prediction of conversion time using 

ulti-modal and longitudinal data 

Table 6 shows the PCC values of the predicted conversion times

sing different combinations of longitudinal and multi-modal data.

s can be seen from the table, the proposed methods (last 2

olumns) perform best in all settings. Particularly, for a smaller

eature dimension, LRAD-FS-MC (column DFMC) performs better

e.g., MRI, MRI+Cli at T 4 ). For a larger feature dimension, FS-LRAD-

C (column FDMC) performs better (e.g., MRI+PET, MRI+PET+Cli).
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Fig. 5. Boxplots of PCC between the predicted and true pMCI conversion times using different combinations of modalities. 

Fig. 6. Boxplots of SROCC between the predicted and true pMCI conversion times using different combinations of modalities. 
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Fig. 7. Boxplots of R 2 score of pMCI conversion time prediction using different combinations of modalities. 

Table 6 

PCC of MCI conversion time predictions using longitudinal and multi-modal 

data. An l 1 -norm error term is used in LRR. 

Modality Time Baseline ‖ E ‖ 1 in LRR 

MC FMC DMC FDMC DFMC 

MRI T 4 0.462 ∗ 0.480 ∗ 0.540 ∗ 0.550 0.560 

T 41 0.423 ∗ 0.476 ∗ 0.437 ∗ 0.528 0.509 

T 42 0.440 ∗ 0.459 ∗ 0.451 ∗ 0.524 0.504 

T 43 0.426 ∗ 0.41 ∗ 0.463 ∗ 0.511 0.521 

MRI + PET T 4 0.512 ∗ 0.531 ∗ 0.454 ∗ 0.568 0.550 ∗

T 41 0.415 ∗ 0.502 ∗ 0.448 ∗ 0.533 0.512 ∗

T 42 0.452 ∗ 0.475 ∗ 0.431 ∗ 0.513 0.503 

T 43 0.442 ∗ 0.485 ∗ 0.467 ∗ 0.522 0.491 ∗

MRI + Cli T 4 0.566 ∗ 0.594 ∗ 0.643 ∗ 0.639 ∗ 0.665 

T 41 0.552 ∗ 0.582 ∗ 0.605 0.587 0.607 

T 42 0.553 ∗ 0.617 ∗ 0.593 ∗ 0.643 0.626 ∗

T 43 0.576 ∗ 0.622 0.610 0.626 0.619 

MRI + PET+Cli T 4 0.558 ∗ 0.610 ∗ 0.556 ∗ 0.643 0.633 

T 41 0.579 ∗ 0.607 0.537 ∗ 0.612 0.596 ∗

T 42 0.471 ∗ 0.598 ∗ 0.569 ∗ 0.616 0.621 

T 43 0.566 ∗ 0.623 0.597 ∗ 0.631 0.621 
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Table 7 

SROCC of MCI conversion time predictions using longitudinal and multi- 

modal data. An l 1 -norm error term is used in LRR. 

Modality Time Baseline ‖ E ‖ 1 in LRR 

MC FMC DMC FDMC DFMC 

MRI T 4 0.463 0.476 0.536 0.548 0.557 

T 41 0.420 0.472 0.433 0.516 0.506 

T 42 0.440 0.457 0.446 0.523 0.506 

T 43 0.432 0.403 0.465 0.499 0.536 

MRI + PET T 4 0.492 0.524 0.446 0.554 0.551 

T 41 0.400 0.498 0.4 4 4 0.514 0.506 

T 42 0.442 0.485 0.417 0.519 0.505 

T 43 0.446 0.481 0.465 0.521 0.481 

MRI + Cli T 4 0.561 0.578 0.631 0.625 0.661 

T 41 0.526 0.568 0.579 0.568 0.599 

T 42 0.543 0.605 0.593 0.635 0.613 

T 43 0.563 0.620 0.593 0.624 0.608 

MRI + PET+Cli T 4 0.537 0.600 0.541 0.636 0.615 

T 41 0.555 0.594 0.517 0.597 0.579 

T 42 0.462 0.581 0.555 0.602 0.612 

T 43 0.566 0.613 0.591 0.622 0.609 
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m  
he best performance is obtained when using MRI+Cli at T 4 , which

ives us an average PCC value of 0.665. Similar observations can be

btained for SROCC, as shown in Table 7 , and R 2 scores, as shown

n Table 8 . Thus, the rule of thumb is to choose LRAD-FS-MC when

he feature dimension is smaller and less noisy, and choose FS-

RAD-MC when the feature dimension is bigger and noisier. 

.9. Discussions 

Comparing the results of MRI+PET+Cli and MRI+Cli, especially

eferring to Table 4 , it seems that there is a drop in performance

hen additional PET data is used. There could be several possible

easons behind this observation, including the small sample size
f the data. This is because the number of samples being used is

uch less than the number of features. The number of samples

sed in this study is 118, which is relatively small compared to the

umber of features (93 for each modality at each time point). Dur-

ng training, cross-validation uses an even smaller data subset for

eature selection, resulting in instability especially in the presence

f outliers and missing data. For the ADNI dataset we used in this

tudy, PET data are not available for half of the samples, whereas

linical cognitive scores and MRI are relatively complete. The rela-

ively smaller number of samples with PET data makes prediction

sing PET less reliable. We use the results in Table 4 as an exam-

le, where columns (c) and (d) refer respectively to our proposed

ethod without and with feature selection. It can be seen that,
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Table 8 

R 2 scores of MCI conversion time predictions using longitudinal and multi- 

modal data. An l 1 -norm error term is used in LRR. 

Modality Time Baseline ‖ E ‖ 1 in LRR 

MC FMC DMC FDMC DFMC 

MRI T 4 0.111 0.172 0.231 0.243 0.250 

T 41 0.100 0.161 0.092 0.221 0.197 

T 42 0.118 0.136 0.090 0.216 0.175 

T 43 0.094 0.104 0.100 0.201 0.208 

MRI + PET T 4 0.175 0.215 0.122 0.263 0.245 

T 41 0.105 0.188 0.121 0.216 0.196 

T 42 0.124 0.144 0.117 0.208 0.182 

T 43 0.117 0.163 0.124 0.209 0.179 

MRI + Cli T 4 0.191 0.307 0.340 0.346 0.369 

T 41 0.222 0.287 0.282 0.300 0.307 

T 42 0.220 0.320 0.244 0.346 0.320 

T 43 0.239 0.325 0.270 0.325 0.321 

MRI + PET+Cli T 4 0.190 0.308 0.224 0.344 0.336 

T 41 0.261 0.294 0.209 0.312 0.292 

T 42 0.140 0.287 0.219 0.316 0.305 

T 43 0.243 0.323 0.268 0.333 0.319 

Table 9 

pMCI classification accuracy using multi-modal and longitudinal data, compar- 

ison of results with other methods. 

Modality Time iMSF Ingal Proposed 

LogisticR LeastR FDMC DFMC 

MRI T 4 0.683 0.678 0.620 0.715 0.720 

T 41 0.681 0.686 0.690 0.743 0.756 

T 42 0.690 0.694 0.643 0.719 0.729 

T 43 0.663 0.650 0.614 0.731 0.728 

MRI + PET T 4 0.687 0.684 0.680 0.737 0.726 

T 41 0.658 0.654 0.721 0.720 0.723 

T 42 0.685 0.706 0.675 0.708 0.679 

T 43 0.676 0.654 0.705 0.702 0.720 

MRI + Cli T 4 0.792 0.766 0.771 0.821 0.828 

T 41 0.794 0.784 0.768 0.805 0.839 

T 42 0.800 0.789 0.772 0.802 0.807 

T 43 0.834 0.830 0.787 0.826 0.825 

MRI + PET+Cli T 4 0.787 0.764 0.777 0.812 0.802 

T 41 0.802 0.797 0.691 0.777 0.755 

T 42 0.811 0.810 0.727 0.767 0.757 

T 43 0.832 0.806 0.717 0.796 0.800 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10 

PCC of pMCI conversion time predictions using multi-modal and longitudinal 

data, comparison of results with other methods. 

Modality Time iMSF Ingal Proposed 

LogisticR LeastR FDMC DFMC 

MRI T 4 0.464 0.567 0.32 0.55 0.56 

T 41 0.432 0.520 0.281 0.528 0.509 

T 42 0.445 0.474 0.326 0.524 0.504 

T 43 0.397 0.493 0.307 0.511 0.521 

MRI + PET T 4 0.499 0.494 0.392 0.568 0.55 

T 41 0.407 0.493 0.37 0.533 0.512 

T 42 0.502 0.507 0.364 0.513 0.503 

T 43 0.442 0.447 0.395 0.522 0.491 

MRI + Cli T 4 0.577 0.654 0.543 0.639 0.665 

T 41 0.565 0.588 0.523 0.587 0.607 

T 42 0.604 0.638 0.45 0.643 0.626 

T 43 0.653 0.651 0.48 0.626 0.619 

MRI + PET + Cli T 4 0.578 0.621 0.491 0.643 0.633 

T 41 0.621 0.584 0.429 0.612 0.596 

T 42 0.638 0.617 0.333 0.616 0.621 

T 43 0.632 0.657 0.352 0.631 0.621 
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with feature selection, MRI+PET and MRI+PET+Cli are better than

the methods without feature selection, which to some extent veri-

fies our expectation that removing outlier features in the PET data

would improve prediction performance. 

5.10. Comparison with other methods 

In addition, we also compared our method with the methods

proposed in ( Yuan et al., 2012; Ingalhalikar et al., 2012 ). Some

modifications were made to the method in ( Yuan et al., 2012 ), so

that it can be applied to our multi-modal and longitudinal dataset,

as described in Section 5.2 . The results in Table 9 indicate that the

proposed method outperforms these state-of-the-art methods for

MRI, MRI+PET and MRI+Cli longitudinal data. For MRI+PET+Cli, the

proposed method is still the best when data from a single time

point is used, but does not perform as well as iMSF when more

time points are used. It is worth noting that this iMSF result is

obtained after our improvement modifications, the original iMSF

algorithm can not handle so many missing patterns in the lon-

gitudinal multi-modal data. Nevertheless, this also likely indicates

that a better feature selection method is needed for the proposed

framework to further improve performance. As we are focusing on

LRAD in this work, we left this as our future work. Similar obser-
ation can be obtained for the PCC metric, as shown in Table 10 .

he best classification and conversion time prediction accuracy for

hese two tables are still achieved by the proposed LRAD-FS-MC,

sing MRI and clinical data, at the value of 0.839 and 0.665, re-

pectively. 

. Conclusion 

In this study, we have proposed a series of algorithms based

n subspace methods to address two very important questions

n AD study – which MCI subject will progress to AD and when

t will occur. Our framework is one of the few studies that ad-

resses these queries jointly using incomplete multi-modal and

ongitudinal neuroimaging and clinical data. Our framework con-

ists of three main components, i.e., sparse feature selection, low-

ank affinity pursuit denoising (LRAD), and low-rank matrix com-

letion (LRMC), in addition to efficient Bayesian hyper-parameter

ptimization. We have demonstrated that the LRAD is able to im-

rove the LRMC-based predictions, either in terms of the diag-

ostic labels or the conversion time predictions using MCI data.

e use LRAD to denoise heterogeneous multi-modal neuroimaging

nd clinical data by self-representing the data with the neighbor-

ng data. The LRAD with the l 1 -norm regularization performs better

han the LRAD with the l 2 -norm regularization, indicating that the

ata we used contain more likely sparse noise rather than Gaus-

ian noise. On the other hand, we have modified the original ma-

rix completion algorithm by introducing three data fitting terms

nd one inequality constraint to predict conversion and time-to-

onversion jointly. The added inequality constraint has made the

onversion time prediction of the censored sMCI data possible. In

ddition, we used Bayesian optimization to efficiently search for

he optimal set of hyper-parameters for our proposed framework.

xtensive evaluations also indicate that the proposed method out-

erforms the conventional LRMC in various settings, as well as a

umber of state-of-the-art methods. 
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