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ABSTRACT

In this paper, we aim to predict conversion and time-to-conversion of mild cognitive impairment (MCI)
patients using multi-modal neuroimaging data and clinical data, via cross-sectional and longitudinal stud-
ies. However, such data are often heterogeneous, high-dimensional, noisy, and incomplete. We thus pro-
pose a framework that includes sparse feature selection, low-rank affinity pursuit denoising (LRAD), and
low-rank matrix completion (LRMC) in this study. Specifically, we first use sparse linear regressions to
remove unrelated features. Then, considering the heterogeneity of the MCI data, which can be assumed
as a union of multiple subspaces, we propose to use a low rank subspace method (i.e., LRAD) to denoise
the data. Finally, we employ LRMC algorithm with three data fitting terms and one inequality constraint
for joint conversion and time-to-conversion predictions. Our framework aims to answer a very important
but yet rarely explored question in AD study, i.e., when will the MCI convert to AD? This is different
from survival analysis, which provides the probabilities of conversion at different time points that are
mainly used for global analysis, while our time-to-conversion prediction is for each individual subject.
Evaluations using the ADNI dataset indicate that our method outperforms conventional LRMC and other
state-of-the-art methods. Our method achieves a maximal pMCI classification accuracy of 84% and time
prediction correlation of 0.665.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Alzheimer’s disease (AD) (Association et al., 2016, 2017) is the
most prevalent dementia and is commonly associated with pro-
gressive memory loss and cognitive decline. It is incurable and
requires attentive care, thus imposing significant socio-economic
burden on many nations. It is thus vital to detect AD in its earli-
est stage before its onset for possible therapeutic treatment. The
prodromal stage of AD, called mild cognitive impairment (MCI),
is characterized by mild but measurable decline of memory and
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cognition. Studies show that some MCI patients will recover over
time, but more than half will progress to dementia within five
years (Gauthier et al., 2006). MCI patients that will progress to AD
are retrospectively categorized as progressive MCI (pMCI) patients,
whereas those who remain stable as MCI are categorized as stable
MCI (sMCI). In this paper, we focus on differentiating pMCI from
sMCI patients and predicting the time to the event of AD conver-
sion.

Biomarkers based on different modalities, such as magnetic res-
onance imaging (MRI), positron emission topography (PET), and
cerebrospinal fluid (CSF), have been widely studied for the predic-
tion of AD progression (Zhang et al., 2012; Li et al., 2015; Weiner
et al, 2013; Zhan et al.,, 2015; Li et al, 2014; Adeli-Mosabbeb
et al.,, 2015; Huang et al,, 2015; Zhu et al., 2015; 2016; Zhou et al.,
2017; Zhu et al., 2017; Thung et al., 2016, 2017). The Alzheimer’s
disease neuroimaging initiative (ADNI) collects these data longi-
tudinally from subjects ranging from cognitively normal elderly
subjects to AD patients in an effort to improve prediction of AD
progression. However, these data are incomplete due to subject


https://doi.org/10.1016/j.media.2018.01.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2018.01.002&domain=pdf
mailto:khthung@email.unc.edu
mailto:dgshen@med.unc.edu
http://adni.loni.ucla.edu
http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://doi.org/10.1016/j.media.2018.01.002

K.-H. Thung et al./Medical Image Analysis 45 (2018) 68-82 69

dropouts and unacquired modalities associated with factors such
as study design and cost constraints. The easiest and most pop-
ular way to deal with missing data is by discarding incomplete
samples (Zhang et al.,, 2012), which will however decrease sam-
ple size and statistical power. An alternative is to impute the miss-
ing data, via methods such as k-nearest neighbor (KNN), expec-
tation maximization (EM), or low-rank matrix completion (LRMC)
(Troyanskaya et al., 2001; Zhu et al., 2011; Candés and Recht, 2009;
Sanroma et al., 2014). These imputation methods, however, do not
perform well on data with blocks of missing values (Thung et al.,
2014; Yuan et al,, 2012; Yu et al., 2014), causing erroneous predic-
tion outcomes.

To avoid the need for imputation, Yuan et al. (2012) proposed a
method, called incomplete multiple source feature learning (iMSF),
to first divide the data into disjoint subsets of complete data, and
then jointly learn the classification or prediction models for these
subsets. Through joint feature learning, iMSF enforces all subset
classifiers to use a common set of features for each modality. How-
ever, this will cause samples with less number of modalities to
have limited number of features when making prediction. In ad-
dition, using disjoint subsets of data will also cause small sample
size issue for each prediction model (Xiang et al., 2014).

On the other hand, the method proposed by
Goldberg et al. (2010) imputes the missing feature values and
target values (e.g., diagnostic status and clinical scores) simultane-
ously using a low-rank assumption. All samples, including those
with missing feature values, and their corresponding targets are
concatenated into a matrix and the unknown values are then
imputed via LRMC. This approach is able to make use of the
incomplete samples more effectively. Thung et al. (2014) improved
the efficiency and effectiveness of this method by performing
feature and sample selection before matrix completion.

However, all these methods do not explicitly take into account
the heterogeneous nature of the data. Recent studies (Markesbery,
2010; Nettiksimmons et al., 2013) show that there is signifi-
cant biological heterogeneity among ADNI amnestic MCI patients.
Some MCI subjects are biologically similar to normal aging sub-
jects, while some have the characteristic AD’s pathologies, and
some have other various late-life neurodegenerative pathologies
(Nettiksimmons et al., 2013; Rahimi and Kovacs, 2014). Post-
mortem brain studies (Markesbery, 2010; Petersen et al., 2006;
Jicha et al., 2006; Cairns et al., 2015) on deceased MCI and AD sub-
jects also confirm that most of them developed a mixture of neu-
rodegenerative diseases. The comorbidities (other than AD) include
argyrophilic grain dementia, Lewy body dementia, Parkinson dis-
ease, hippocampal sclerosis, and frontotemporal dementia. These
studies imply that not all MCI subjects are affected by the same
AD pathologies.

In this study, we utilize longitudinal multi-modality data
to capture the complexity and heterogeneity of AD pathology.
The data are heterogeneous, prone to noise, and incomplete. To
deal with these problems, we recently proposed an approach
(Thung et al., 2015b) to cluster the data into subsets using low-
rank representation (LRR) (Liu et al., 2013) and perform LRMC on
the samples on each of these subsets separately, to improve the
overall classification performance. This approach assumes that the
data resides in a union of several low-dimensional subspaces, each
spanned by a data subset, and tries to recover these subspaces
through LRR. Each sample is assumed to reside in one of the
subspaces. However, in reality, the samples can potentially reside
across multiple subspaces (Markesbery, 2010). In addition, data
clustering also reduces the number of samples associated with
each subspace and hence may reduce the effectiveness of the pre-
diction model. We have also demonstrated in (Thung et al., 2015b)
that the prediction performance of the LRMC algorithm can also

be improved by using a denoised version of the data, which can
be obtained via LRR.

In this paper, we propose to use low-rank affinity pursuit de-
noising (LRAD) in combination with the sparse feature selection
(FS) to improve the prediction power of LRMC for incomplete,
noisy, and heterogeneous multi-modal data. More specifically, we
use incomplete low-rank representation (ILRR) (Liu et al., 2013; Shi
et al., 2014) for LRAD, where the samples are denoised by repre-
senting them using their neighboring points. In addition, we use
lasso (Tibshirani, 1996; Liu et al., 2009a, 2009b; Liu and Ye, 2009)
to select the most discriminative features for use in prediction.
Lastly, we utilize LRMC to predict the output targets, which con-
sist of diagnostic labels (i.e., pMCI/sMCI) and conversion times. We
tested our framework using longitudinal and cross-sectional multi-
modality MRI data and confirm that the proposed method outper-
forms the conventional LRMC method and other state-of-the-art
methods. It is also important to note that there are many hyper-
parameters associated with LRMC. In this paper, we propose to use
a Bayesian optimization framework to automatically select the best
set of hyper-parameters. The contributions of this paper are three-
fold:

1. We propose a framework for pMCI diagnosis and conversion
time prediction using longitudinal multi-modal data, which
can be incomplete and noisy. In comparison, previous stud-
ies in the literature (Section 2.1) were often focusing on us-
ing either multi-modal or longitudinal data for pMCI diagno-
sis. Moreover, unlike our method which is applicable to incom-
plete datasets, most of the previous methods are only applica-
ble to datasets without missing data. More importantly, time-
to-conversion predictions in the literature are mostly used for
global analysis based on statistical methods, while our study is
one of the few non-statistical methods that addresses this is-
sue at individual level. To the best of our knowledge, our study
is the first to predict both the pMCI diagnosis and time-to-
conversion jointly. To this end, we propose to employ sparse
feature selection to remove outlier features, ILRR to denoise the
data, and finally LRMC to predict the target outputs.

2. We propose a matrix completion algorithm that is able to pre-
dict the conversion time even when some of the data are miss-
ing and censored. The missing data issue is due to missing
modalities at certain time points for some subjects. In addition,
our sMCI data is censored, i.e., we are unsure whether the sMCI
subject will progress to AD if we increase the monitoring period
indefinitely. Conventional linear regression models are not ap-
plicable to censored data, while the conventional methods that
work on these data (Section 2.2) only provide the “probability”
of conversion. To this end, we design an LRMC algorithm with
three data fitting terms, one for the input features, one for the
diagnostic labels (binary targets), and one for the conversion
time (continuous-valued targets), along with an additional in-
equality constraint. Our modified matrix completion algorithm
enables us to predict the conversion time for the censored data
(i.e., SMCI), by constraining their predicted values to be at least
more than a specific value.

3. We employ a Bayesian optimization scheme to automatically
select the optimal hyper-parameters for LRMC.

2. Related works

In this section, we briefly discuss the related previous research
works.

2.1. MCI-to-AD conversion prediction

Many works (Wei et al., 2016; Stoub et al, 2004) use
MRI data for MCI-to-AD conversion predictions. For example,
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Stoub et al. (2004) used MRI-derived entorhinal volume for pre-
diction. Wei et al. (2016) used MRI and structural network features
to predict MCI-to-AD conversion. They employed sparse linear re-
gression with stability selection to select features and then used
support vector machine (SVM) for classification. They used data
at baseline, and 6, 12, and 18 months before diagnosis of prob-
able AD for prediction. The best classification accuracy they ob-
tained was 76% using the data 6 months prior to AD diagnosis.
Misra et al. (2009) used longitudinal MRI data to extract brain
temporal changes for detecting MCI-to-AD conversion. However,
this study used follow-up data of very short period (i.e., up-to 15
months) with unbalanced data at each cohort (i.e., pMCI and sMCI).

Some works used multimodal data (e.g., MRI, PET, CSF, demo-
graphics, genetic data) for conversion prediction (Davatzikos et al.,
2011; Cheng et al., 2015b, 2015a; Dukart et al., 2016; Moradi et al.,
2015). Cheng et al. (2015b), for example, used MRI, PET, and CSF
data in their studies. They employed transfer learning to borrow
information from other related cohorts, i.e., AD and NC, to help se-
lect the features from MCI cohorts for MCI-to-AD conversion pre-
diction, achieving 79% prediction accuracy. In another similar work,
Cheng et al. (2015a) employed multimodal manifold-regularized
transfer learning for feature selection, and achieved 80% accu-
racy in conversion prediction. Xu et al. (2016) used modality-
weighted sparse representation-based classification method to
combine data from MRI, fluorodeoxyglucose PET, and florbetapir
PET, and achieved 82.5% prediction accuracy. They defined pMCI
as MCI subjects that progressed to MCI within 36 months, and de-
fined the remaining MCI subjects as sMCI. However, such definition
results in highly unbalanced cohorts (i.e., 27 pMCI and 83 sMCI).
Korolev et al. (2016) used MRI, plasma, and clinical biomarkers
to predict MCI-to-AD conversion via probabilistic pattern classifi-
cation, and achieved 80% accuracy. Moradi et al. (2015) used MRI
and clinical biomarkers for MCI-to-AD conversion prediction, and
achieved an AUC of 0.90 using regularized logistic regression to se-
lect features and then using low density separation (LDS) as the
classifier.

Most of these methods are only applicable for datasets without
missing data. In contrast, our study uses longitudinal multimodal
data that can be incomplete. In addition, all of the previous stud-
ies mentioned above are focused on MCI-to-AD conversion predic-
tion, which only answer the question on “who” will progress to
AD. AD studies that predicted time to conversion, which answer
the question on “when” the conversion will occur, are relatively
rare. Conversion time prediction is important, as it gives us use-
ful information about the disease progression rate and the sever-
ity of the disease, which may affect the individual treatment plan.
In addition, knowing when the patient will progress to AD is also
much more meaningful and clinically relevant (also more challeng-
ing) than just predicting whether the patient will progress to AD.
Our work explores both problems.

2.2. Survival analysis

Conversion time prediction in this study is similar to survival
analysis (Miller Jr, 2011; Liu et al., 2017; Oulhaj et al., 2009). Sur-
vival analysis computes the probability of event occurrence (e.g.,
disease status conversion) at future time points. For example,
Oulhaj et al. (2009) used interval-censored survival analysis statis-
tical methods to identify baseline cognitive tests that can best pre-
dict the time of conversion to MCI (from NC). Liu et al. (2017) used
independent analysis and Cox model for their MCI-to-AD survival
analysis study. Michaud et al. (2017), on the other hand, employed
competing-risks survival regression models and Cox proportional
hazards models to investigate how the demographics and clinical
characteristics are related to AD conversion time.

Despite the similarity between conversion time prediction (as
in our work) and survival analysis (as in many previous works),
they actually address different questions. First, survival analysis
aims to predict the probability of AD conversion at different future
time points, mainly used for global analysis (e.g., comparing sur-
vival times of two groups); conversion time prediction in the cur-
rent work predicts “when” the conversion will occur. As a result,
survival analysis is generally based on a probability model (e.g.,
Cox regression model), whereas conversion time prediction is gen-
erally based on conventional regression models (e.g., least-squares
regression model). Second, both analysis methods are designed for
different types of data. Specifically, survival analysis is designed for
censored data (where the survival times are unknown or incom-
plete) and uncensored data, whereas conversion time prediction is
generally only suitable for non-censored data. For our study, the
time-to-conversion data is censored for sMCI subjects, i.e., we do
not know whether or when the sMCI subject will progress to AD
if the monitoring time is extended indefinitely. Conventional lin-
ear regression models are unable to address this censored data is-
sue, and thus unable to perform conversion time prediction. How-
ever, our improved matrix completion algorithm is able to address
the censored data issue for the sMCI subjects, by treating the con-
version time of sMCI subject as unknown and limiting its time-to-
conversion prediction to be at least a specific value (e.g., maximum
monitoring period). We will discuss our method in greater detail in
Section 4.

2.3. Low rank subspaces

It has been investigated in several previous studies that the
data coming from different classes often lie in multiple low-
dimensional subspaces (Lin et al., 2015b; Elhamifar and Vidal, 2011,
2013; Lin et al,, 2015a; She et al., 2016). Intuitively, this is be-
cause data from each class are often more related with each other
than the data coming from other classes, and hence, the data is
assumed to reside in a union of a number of lower-dimensional
subspaces. For instance, the following sentence is directly quoted
from Elhamifar and Vidal (2011) which is also extended and pub-
lished in Elhamifar and Vidal (2013):

“In many problems in signal/image processing, machine learning
and computer vision, data in multiple classes lie in multiple low-
dimensional subspaces of a high-dimensional ambient space.”

For our application, where the data are from the MCI cohort of
the ADNI dataset, there are samples with different survival times
(time to convert to AD). This is similar to data with different
“classes” and thus it is intuitive to assume that the data is a union
of low-rank subspace. In this study, however, we are not using low
rank subspace algorithm for clustering, but we take advantage of
this concept for denoising the data.

3. Materials and preprocessing
3.1. Materials

In this study, we are interested in predicting two target out-
puts, i.e., the pMCI/sMCI class labels and the conversion times
in months, using multi-modal data from the ADNI? dataset. The
multi-modal data used in this study include T1 weighted MR scans,
fluorodeoxyglucose PET (FDG-PET, PET for short for the rest of
the manuscript) scans, and cognitive clinical scores (e.g., Mini-
Mental State Exam (MMSE), Clinical Dementia Rating (CDR), and
Alzheimer’s Disease Assessment Scale (ADAS)). Using these multi-
modal data at a single time point and multiple time points, we

2 http://adni.loni.ucla.edu.
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Table 1
Demographic information of subjects involved in this study. (Edu.: Educa-
tion; std.: Standard Deviation).

No. of subjects  Gender (M/F)  Age (years) Edu. (years)

pMCI 65 49/16 753 £ 6.7 156 + 3.0
sMCI 53 37/16 76.0 + 79 155 + 3.0
Total 118 86/32 - -

performed cross-sectional and longitudinal study, respectively, in
this paper. For cross-sectional study, we used different combina-
tions of modalities at 18th month for pMCI and conversion time
predictions. For longitudinal study, we examined our prediction
model using different combinations of modalities at 18th month
and one additional time point (i.e.,, baseline, 6th month or 12th
month). For both the cross-sectional and longitudinal studies, we
used the same set of subjects with the same assignment of disease
status labels (i.e., pMCI and sMCI), for easier comparison of results
between these two studies. More specifically, we define pMCI sub-
jects as MCI subjects who progressed to AD within the monitoring
period from 18th to 60th month, while MCI subjects who remained
stable for upto 60th month were labeled as sSMCI. We also excluded
MCI subjects who progressed to AD on and before 18th month in
this study since it is meaningless to use (longitudinal) data that
were labeled as AD for pMCI/sMCI prediction. Based on the defini-
tion and exclusion criteria mentioned above, we have 65 pMCI and
53 sMCI subjects for this study, with their demographics summa-
rized in Table 1, and their Roster IDs (RIDs) given in the supple-
mentary file. As can be seen from the table, there is no significant
difference in term of education, age and gender distribution be-
tween these two cohorts of data.

In addition to pMCI and sMCI labels, we also used conversion
time as another target in our study. However, it is difficult, if not
impossible, to obtain the “ground truth” of conversion time, as the
conversion, in itself, is a process that does not occur at one sin-
gle time point. In addition, ADNI only scans and evaluates the MCI
patients at specific time points after the baseline scan (e.g., 12th,
18th, 24th, 36th month, etc.), where the conversion can occur at
any time between two scan times. In this work, we estimate the
“ground truth” of conversion time as the time period between the
date of 18th month scan (we used 18th month as the reference)
and the date of the nearest scan after the conversion had occurred.
Though this is currently the best estimate we can get, this value is
actually the upper bound of the real conversion time. As the exact
scanning dates are used to estimate the “ground truth” of conver-
sion time, the estimated values are not discrete (e.g., 6 months,
12 months, etc., if we use the scanning plan to obtain the conver-
sion time), but rather real continuous values (e.g., 5.7 months, 10.4
months, etc.). Thus, for this target, we treat the conversion time
prediction as a regression problem. During model evaluation, we
choose performance measures that are less sensitive to the uncer-
tainty of the noisy “ground truth”.

3.2. Preprocessing and feature extraction

We use region-of-interest (ROI)-based features from the MRI
and PET images. Each MRI image was Anterior Commissure - Pos-
terior Commissure (AC-PC) aligned using MIPAV?, corrected for in-
tensity inhomogeneity using the N3 algorithm (Sled et al., 1998),
skull stripped (Wang et al., 2011), tissue segmented (Zhang et al.,
2001), and registered to a template (Kabani, 1998; Shen and Da-
vatzikos, 2002; Thung et al., 2014; Xue et al., 2004, 2006b, 2006a).
Gray matter (GM) volumes, normalized by the total intracranial

3 http://mipav.cit.nih.gov.

volume, were extracted as features from 93 ROIs (Wang et al.,
2011). We also affinely aligned each PET image to its correspond-
ing skull stripped MRI image, and used the mean intensity value
of each ROI as feature.

4. The proposed methods

In this study, we use multi-modal (i.e., MRI, PET, clinical scores)
and longitudinal data (i.e., data collected at multiple time points)
for classification and regression analysis. These data are heteroge-
neous, high dimensional, possibly incomplete, and could be cor-
rupted with noise. To address these issues, we propose a prediction
framework that consists of three main components: 1) sparse fea-
ture selection (FS), which removes features that are unrelated to
the targets via sparse linear regressions, 2) low-rank affinity pur-
suit denoising (LRAD), which utilizes low-rank representation (LRR)
to denoise the data using neighboring samples in low-rank sub-
space, and 3) low-rank matrix completion (LRMC), which predicts
the unknown targets (i.e., diagnostic labels and conversion times).
Fig. 1 shows an overview of our proposed framework. The opera-
tion details involved in these three components are described in
the following subsections.

4.1. Notation

We first introduce the notations that will be used to describe
the formulation of the proposed method. We use X € R™™ to de-
note the feature matrix with n samples of m features. Here, n de-
pends on the number of time points and the number of modali-
ties used. Each sample (i.e., row) in X is a concatenation of fea-
tures from different time points and different modalities (e.g., MRI,
PET and clinical scores). Note that X can be incomplete because
of missing data, due to various reasons described in the introduc-
tion (Thung et al., 2013, 2014, 2015a, 2015b). The corresponding
target matrix is denoted as Y € R™2, where the first column is a
vector of labels (1 for pMCI, and —1 for sMCI), and the second col-
umn is a vector of conversion times (e.g., the number of months
to convert to AD). The conversion times associated with the sMCI
samples are unknown, but at least larger than the last monitored
time. For any matrix M, M;  denotes its element indexed by (j, k),
whereas M; . and M. ; denote their jth row and kth column, re-
spectively. We denote ||M|. =) o;(M) as the nuclear norm (i.e.,
sum of the singular values {o;} of M), [[M|l; = 3" [M;| as the [;-
norm, ||M||; = (3 Mik)l/2 as the l,-norm, and M7 as the transpose

of M. I is the identity matrix.

4.2. Feature selection using sparse regression

Not all the features are related to the disease progression
(Thung et al, 2014; Yuan et al, 2012). We perform feature se-
lection to remove features which are unrelated to our prediction
tasks. We use lasso with logistic and least square loss functions
(Tibshirani, 1996; Liu et al., 2009b; Liu and Ye, 2009) to select fea-
tures that are related to the target outputs. As the data, which is
the concatenation of multiple modalities and time points, is pos-
sibly incomplete, we can not perform the feature selection using
Egs. (1) and (2) on the whole dataset directly. We can either use
an advanced feature selection method that works with incomplete
data, like (Yuan et al., 2012), or perform feature selection on each
group of complete data separately. We choose the latter as meth-
ods like (Yuan et al., 2012) do not work well when there are too
many groups of data, as in our case. Specifically, we split the in-
complete data into groups with complete data according to modal-
ities and time points (Thung et al., 2015b; 2015a), so that lasso can
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Fig. 1. Overview of the proposed framework, which consists of sparse feature selection, low-rank affinity pursuit denoising (LRAD), and low-rank matrix completion.

be applied independently to each group. The two lasso algorithms
used are given as

_ o .
mingo [ly —XVB 13+ y11187]

1, (1)

ming, Y log(1 + exp(=y;X{"85)) + 121185 1. (2)
J

where X is the data matrix of the ith group, and Bg') is the sparse
weight vector. y is the target label (first column of Y), as we are
more interested in the classification task, while y; is the target la-
bel for the jth sample. We use two types of linear regressions to
select features, as our previous study (Thung et al., 2015a) showed
that the prediction model that uses two linear regressions is bet-
ter than the model that uses one linear regression. The combined
non-zero values (OR operation) in vectors B\ and B are used
to select corresponding features in X(. The regularizing parame-
ters y1 and y, are determined through cross-validation using the
training data.

4.3. Low-rank affinity pursuit denoising (LRAD)

ROI-based MRI and PET features can be noisy. In addition, when
features from multiple time points are stacked together, the di-
mensionality of the features is high. Nevertheless, as these features
are highly correlated, the true rank of the data matrix (i.e., a 2D
matrix X, where each row denotes feature vector of a sample) is
low if the noise is removed. Thus, we can use, e.g., a robust princi-
pal component analysis (RPCA) algorithm (Liu et al., 2013; Candes
et al., 2011; Wright et al., 2009), to denoise the data by decompos-
ing the data into two components — the low-rank component and
the sparse noise component. However, as criticized by Vidal (2010),
RPCA algorithm denoises the data with the assumption that there
is only one low-rank dimensional subspace in the data, which may
not produce satisfactory results if the data is actually a union of
low-rank subspaces, as could be the case of our data, where the
data is heterogeneous. Following the work in (Vidal, 2010; Thung
et al, 2015b), we introduce low-rank affinity pursuit denoising
(LRAD) to denoise data by representing each sample, with possible
missing feature values, using its neighboring samples in the low-
rank subspace, via an incomplete version of low-rank representa-
tion (LRR). LRR has been previously used in various applications,
such as subspace clustering (Liu et al., 2013), subspace segmenta-
tion Liu et al. (2010), etc (Zhou et al., 2013; Liu and Yan, 2011). In
this work, we introduce a procedure to utilize it for denoising.

In LRR, the data is decomposed into two components — the
low-rank self-representation data component and the error (or
noise) component. As there are missing feature values in X, we use
incomplete data version of LRR (ILRR) (Shi et al., 2014), which is

given as:
ir\nElr} |A|l, + «||E||; s.t. X =AX +E, Xg=Xq, (3)
where X is the completed version of X, which is self-represented
by Ax, A € R™" is the low-rank affinity matrix, E is the error ma-
trix, and o is the regularizing parameter. Each element of A in-
dexed by (i, j) is an indicator of the similarity between the ith
sample and the jth sample, which are represented by the ith row
and the jth row of X, respectively. Thus, the ith row of A denotes
the similarity of the ith sample with all other samples in X. AX
is thus a reconstruction of X, where each row is a linear com-
bination of neighboring rows determined by the A. By imposing
low-rank constraint on A, AX is a low-rank recovery of X, which
is called the “lowest-rank representation” of X (Liu et al., 2013).
In brief, ILRR gives us a locally compact (low-rank) representation
and denoised version of the raw data, given as D = AX. Problem
in Eq. (3) is solved using inexact augmented Lagrangian multiplier
(ALM), as described in (Shi et al., 2014). Note also that we reg-
ularized the error matrix E using the [;-norm, as we expect that
the noise is sparse (e.g., the segmentation and registration errors
could have happened at certain brain regions, causing sparse noise
in ROI-based features). In addition to ||E||;, we also test our frame-
work using the I,-norm, ||E||,, which assumes that the data matrix
X is corrupted by Gaussian noise.

4.4. Predictions using low-rank matrix completion (LRMC)

Assuming a linear relationship between X and Y, the kth tar-
get of Y is given by Y., = Xay + b, = [X 1] x [a; b], where 1 is a
column vector of 1’s, a; is the weight vector, and b, is the off-
set. Assuming that X is low-rank (i.e., each column of X could be
represented by some other columns in X), then the concatenated
matrix M =[X1Y] is also low-rank (Goldberg et al., 2010), i.e.,
each column of M can be linearly represented by other columns,
or each row of M can be linearly represented by other rows.
Based on this assumption, low-rank matrix completion (LRMC)
(Goldberg et al., 2010; Sanroma et al., 2014; 2015; Thung et al.,
2014; Chen et al., 2017) can be applied to M to impute the miss-
ing feature values and the target outputs simultaneously by solving
ming{||Z||. | Mg = Zg}, where Q is the index set of known values
in M, and Z is the completed matrix version of M. In the presence
of noise, the problem can be relaxed as (Goldberg et al., 2010)

. 1 A
min ]|zl + S oo Ma) + =L ry(Zg

Y o1 1 oo M (@)

where le and Qy are the index sets of the known target la-
bels and feature values, respectively, while £;(u,v) =3";log(1 +
exp(—u;v;)) and Ls(u,v) = >°; %(ui —1;)? are the logistic loss func-
tion and mean square loss function, respectively. The nuclear norm
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|I-]l+ in (4) is used as a convex surrogate for matrix rank. Parame-
ters 4 and A; are the trade-off hyper-parameters that control the
effect of each term. In our application, there are two targets, i.e.,
the pMCI label and the conversion time, which are binary and con-
tinuous, respectively. Thus, we use two separate hyper-parameters
and data fitting terms, based on these two targets. The LRMC with
three data fitting terms and one inequality constraint is given as:

1
min w||Z||. + = £Ls(Zg,, Mg,
A2

M
+ = M + ——"-Ls(Zg, ,Mq ), 5
] Q) 2] s(Zg,,» Mg,,) (5)

S.t. Zer > Thax, if er € YSMCI~

L(Zg

yl°

where Qy, is the index set of know regression targets for conver-
sion time, and u, A; and A, are the hyper-parameters. The con-
version times of sMCI samples are considered unknown, except we
know that they are at least larger than the last monitored time
point. Thus, we use the inequality constraint to make sure that
the conversion times of the sMCI samples in the training set are
always larger than a threshold time point, which we set as 12
months in addition to the maximum conversion time. When the
data are z-normalized, this threshold is normalized accordingly. We
solve Eq. (5) using fixed point continuation (FPC) (Algorithm 1)
(Ma et al., 2011; Thung et al., 2014), which consists of 2 alternat-
ing steps for each iteration. The alternating steps of kth iteration
are given as:

Algorithm 1: Low-rank matrix completion.
Data: Xir, Xce, Yir
Result: y;,

1 Hyper-parameters: A1, Ay, ;

2 Initialization: 7, fi, Thax, maxiter;

3 while 7 < u do

4 | < max(fi/4, n);

5

6

for k < 1 to maxiter do
Evaluate gradient step: Gk = Zk — tg(Z) > Egs. (6) &

(7%

7 Evaluate shrinkage step: Z¥+! =S ; (G¥) » Eq. (8);

8 Evaluate projection based on inequality constraint:
z’gy: « max(Tax, z’;zfvj ), if Qyr € Youers

9 if converge then

10 | break

1 end

12 end

13 end

1. Gradient step:
G =Z"—1g(2" (6)

where 7 is the step size and g(Z*) is the matrix gradient which
is defined as

M —M;; ..
, i,j)eQ
|le| 1 +eXp(MijZ,~j) ( ]) vl
1
— (M — Z;;), i,j) e
ez = | o M~ %) (1) S (7)
A ..
ﬁ(zw,-j -7, (i.]) € Qr
0, otherwise.

2. Shrinkage step (Cai et al., 2010):
Z1 = S;,(G¥) = Umax(A — T, 0)V', (8)

where S(-) is the matrix shrinkage operator, UAVT is the SVD of
G, and max(-) is the elementwise maximum operator.

The value of t is determined from the data. A minor modifi-
cation of the argument in (Ma et al., 2011; Goldberg et al., 2010)
would reveal that, as long as we choose a non-negative step size
satisfying T < min (4]S2yr|/A2, 4|2|/21, |€2%]), the algorithm above
is guaranteed to converge to a global minimum.

4.5. Bayesian hyper-parameter optimization

The problem in Eq. (5) involves multiple hyper-parameters (e.g.,
U, A1, A). The values of these hyper-parameters can be obtained
by cross-validation and grid search. This is, however, time consum-
ing. For example, if we test 6 candidate values for each hyper-
parameter, there would be a total of 63 = 216 combinations. If we
test these combinations using 5 fold cross-validation, we will need
to solve Eq. (5) more than 1000 times. It is therefore desirable
to have a more efficient strategy for the hyper-parameter opti-
mization. In this work, we use a Bayesian optimization algorithm
(Bergstra et al., 2011; Thornton et al., 2013; Yogatama and Mann,
2014) to obtain the best hyper-parameters. In this approach, not
all the combination of hyper-parameters are tested. Instead, only
hyper-parameters that have higher probability of improving the
cross-validation accuracy are evaluated. Specifically, Bayesian opti-
mization first builds a prediction model based on previous records
of hyper-parameters and their corresponding cross-validation ac-
curacies. Using the prediction model, we obtain the posterior pre-
dictive distribution map, which predicts the accuracy distribution
for each point in the hyper-parameters search range. Each point
in the predictive distribution map can be characterized by a mean
and a standard deviation, which are used to denote the predic-
tion accuracy and information gain (the larger the standard devi-
ation, the less certain of the prediction, and the higher of infor-
mation gain) of this point, respectively. Balancing the information
gain and the exploitation of the prediction accuracy, Bayesian op-
timization arrives at a value via an evaluation function (which is
commonly called as acquisition function). Finally, the highest point
of the acquisition function is used to choose the hyper-parameter
point to be evaluated next. Then the whole process of selecting
hyper-parameters is repeated until a stopping criterion is fulfilled.

Algorithm 2: Bayesian hyper-parameter optimization.
Data: X, yir
Result: " with greatest *

1 Initialization: Randomly select n hyper-parameters and
evaluate their 5-fold cross validation accuracy values:
H={(6:;v).i=1,...n}

2 for i < n+ 1 to maxiter do

3 Find 6; by optimizing the acquisition function over GP:
0; < argmaxy u(0|#) > Algo. 3;

4 Evaluate /;(0;|X¢r, ytr) > (Expensive computation);

5 | H<—HUO;, ¥y,

6 | if no better y; is found in 10 consecutive iterations then

7 | stop

8 | end

9 end

10 return 0" corresponds to maximum

Algorithm 2 outlines the Bayesian optimization method used
in this work, called sequential model-based optimization (SMBO)
(Bergstra et al., 2011). Let @ denotes a hyper-parameter point,
which consists of the hyper-parameters (i.e., i, A1, A, in (5)) that
we need to optimize, ¢ denote the corresponding cross validation
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accuracy using the training data (X¢, Vi), and H = {(0,¢)} de-
notes the historical observation of the hyper-parameters and their
corresponding accuracy values. SMBO performs the following steps
iteratively: 1) Build a model that captures the relationship of # and
Y using a Gaussian process; 2) Determine the next promising 6
candidate; 3) Compute i based on the selected #; and 4) Update
H with a new pair of (6, ) as well as the Gaussian process pre-
diction model.

Algorithm 3: Gaussian process estimation.

Data: # = {(01.r. Y1)}, © = set of all # candidates
Result: Next 6, to evaluate
1 Initialize kernel parameter.
2 Compute kernel matrix K, k.

> Eq. (13);
> Egs. (10) & (12);

3 Evaluate mean and variance of (@) for all @ € ®. > Egs.
(15) & (16);
4 Evaluate acquisition function for all # € ®. © Eq. (18);

5 Output 6, that gives maximum expectation improvement.
> Eq. (18);

We solve the problem in line 3 of Algorithm 2 by using a
Gaussian Process (GP) prior (Algorithm 3) (Rasmussen, 2004; Ras-
mussen and Williams, 2006; Bergstra et al., 2011; Thornton et al.,
2013; Snoek et al., 2012). GP is an extension of a multivariate
Gaussian distribution to an infinite dimensional stochastic process
(Brochu et al., 2010). For each 6, (@) is assumed to be a sam-
ple from a multivariate Gaussian distribution, which is completely
specified by mean m(#) and covariance k(#, §'):

V() ~ GP(m(6),k(0,0)). (9)

There are many choices of covariance function (Rasmussen and
Williams, 2006; Brochu et al., 2010; Snoek et al., 2012). In this
paper, we use the squared exponential covariance function with
isotropic distance measure:

k(0:,0)) :sfexp(—zlSZHGi_osz) (10)
2

where s; and s, are the parameters of the covariance function.
Assuming that we have historical observation H = {(6;, ¥;),i=
1,...,t} from previous iterations, we want to determine the next
plausible hyper-parameter point, ;. Let ¥, = ¥ (1) denotes
the function value at 6,1, and V1., = ¥ denotes the column vector
of cross validation accuracy values using 64. ;. Then, by the prop-
erties of GP, ¥ and v, are jointly Gaussian (Brochu et al., 2010):

v K k
[wm} N (0* [kf k(om,om)])’ (1
where
k(0:,01) k(0:,0;)
K=| o
k0, 61) k0, 6;)

K = [k(0r:1.61) - k(Be1,00]" (12)

The parameters s; and s, of the covariance function in (10) can be
solved by maximizing the probability of v given # (Rasmussen and
Williams, 2006):

max log(p(¥s. 1)) = _max}—(lﬁ)TK”'ﬁ—log(IKI). (13)

{s1.52

Based on (11), the posterior predictive distribution is given as
(Brochu et al., 2010; Rasmussen and Williams, 2006)

P(Wei110ei1, H) = N(m(Bei1), 0% (0::1)), (14)

where
m@.1) = K'K 1y (15)
0%(01) = k(Bii1.0;11) —K'K 'k (16)

Based on the computed mean and covariance function, we evaluate
the acquisition function which controls the balance between ex-
ploitation (favors @ with higher m) and exploration (favors € with
higher 02). We use expected improvement (EI) as acquisition func-
tion in this study, which is given as (Brochu et al., 2010):

0t+1 = arg?axE(max{O, wH—l - wmaxHH) (17)

= afgipax(m(t") ~ Ymax) ®(Z) + 0 (0)9(2) (18)

where Z = %, and &(-) and ¢(-) are the probability dis-
tribution function (PDF) and cumulative distribution function
(CDF) of the standard normal distribution, respectively. The hyper-
parameter point corresponding to the highest value of the acquisi-
tion function is chosen for the next round of hyper-parameter test.

5. Results

We evaluated our proposed framework using both the longitu-
dinal and the multi-modal data. We tested different variations of
our proposed framework, and compared them with two baseline
methods, as well as two state-of-the-art classification methods that
also work on incomplete data. In the following, we describe the
baseline methods, the variations of our proposed framework, the
state-of-the-art methods, the parameter settings, the performance
metrics, and the experimental results.

5.1. The baseline and the proposed methods

One of the differences of our proposed framework with the pre-
vious LRMC-based prediction model is the inclusion of LRAD de-
noising component, which improves the prediction performance
significantly. Fig. 2 shows the flowchart of the comparison base-
line methods and the proposed methods (i.e., three variations of
the proposed framework). For simplicity, we use abbreviations to
denote the baseline methods and our proposed methods. The top
two rows in Fig. 2, denoted as MC and FMC in the figure, are
the baseline methods that do not use LRAD, i.e, LRMC and FS-
LRMC (FS-based LRMC), respectively. The following three rows in
Fig. 2, denoted as DMC, FDMC and DFMC in the figure, are the pro-
posed methods that utilize LRAD, i.e., LRAD-MC (no feature selec-
tion), FS-LRAD-MC (sequentially performing FS, LRAD and LRMC),
and LRAD-FS-MC (sequentially performing LRAD, FS and LRMC), re-
spectively. Note that the sequence of applying the feature selection
and denoising algorithms will affect the final prediction result. In
FS-LRAD-MC, we select features before data denoising, while, in
LRAD-FS-MC, we select features after data denoising. While the
feature selection algorithm works better if the data is denoised,
the denoising algorithm also works better if the data is lower in di-
mension and discriminative to the prediction task. Therefore, there
are pros and cons for both approaches, and we include both mod-
els in our study. In the experimental result section, we will discuss
a simple guiding principle to help us in deciding which approach
to be used in practice.

5.2. The comparison methods

We compared our method with two state-of-the-art methods -
iMSF (Yuan et al., 2012) and Ingalhalikar’s ensemble method (Ingal)



K.-H. Thung et al./Medical Image Analysis 45 (2018) 68-82 75

(Ingalhalikar et al., 2012). We made some modifications to both al-
gorithms so that they can be applied to our dataset.

1. iMSF: iMSF is a multi-task learning algorithm where each task
is dedicated to the mapping of one data subset to its corre-
sponding target vector. The incomplete dataset is first divided
into several disjoint data subsets, each of which is the input for
one learning task. The mappings of the subsets to their targets
are learned jointly. One of the limitations of this algorithm is
the limited number of samples in each disjoint subset. There-
fore, we make some modifications to iMSF to use overlapped
data subsets for each learning task. This modification greatly in-
creases the number of samples in each data subset, and thus
improves the performance of iMSE.

2. Ingalhalikar’s ensemble model (Ingalhalikar et al., 2012): This al-
gorithm uses an ensemble classification technique to fuse de-
cisions from multiple classifiers constructed using data subsets,
obtained similarly as (Thung et al., 2013). The algorithm groups
the data into subsets, selects features using signal-to-noise ra-
tio coefficient filter (Guyon and Elisseeff, 2003), performs clas-
sification using each data subset based on linear discriminant
analysis (LDA), and fuses all classification results into a sin-
gle result. The decisions are fused using weighted averaging
by assigning a weight to the decision of each classifier based
on its training classification error. We also implemented a re-
gression ensemble model, where we build a sparse regression
model for each data subset and fuse the regression outputs us-
ing weighted averaging.

5.3. Hyper-parameters and performance metrics

For our method, we use a small value o =0.005 for ILRR in
(3). The hyper-parameters y{ and y, in feature selection are de-
termined through 5-fold cross validation using only the training
data of each fold. The parameters u, A1, and A, of LRMC are de-
termined using Bayesian optimization as LRMC is more time con-
suming due to the computation of singular value thresholding. The
hyper-parameters of iMSF and Ingalhalikar’s fusion methods are
determined using 5-fold cross-validation, since they both involve
only one hyper-parameter.

For the classification task involving prediction of diagnostic la-
bels, we use accuracy (ACC) and Area Under the Receiver operator
curve (AUC) as the performance metrics. For the regression task in-
volving prediction of MCI conversion time, we choose performance
metrics that are less sensitive to the uncertainty or noise in the
“ground truth” of conversion time (please refer to Section 3.1), i.e.,
Pearson correlation coefficient (PCC) and Spearman rank-order cor-
relation coefficient (SROCC). PCC measures the prediction accuracy
and SROCC measures the prediction monotonicity. In addition, we
also include coefficient determination to measure how well future
samples are likely to be predicted by the model. For all the perfor-
mance metrics, higher values correspond to better predictions.

5.4. Cross-sectional study: prediction of diagnostic labels using
multi-modal data and single time point data

Figs. 3 and 4 show respectively the pMCI classification accura-
cies and AUCs using different combinations of multi-modal data of
time point T, = 18th month. To show the efficacy of each compo-
nent in the proposed framework, we report the results given by
different combinations of the components, i.e., DMC, DFMC and
FDMC in Fig. 2, which respectively represents LRAD-MC, FS-LRAD-
MC, and LRAD-FS-MC. LRMC and FS-LRMC, represented by MC
and FMC for convenience, are the baseline LRMC methods with-
out LRAD components. More specifically, LRMC and FS-LRMC are
the matrix completion algorithms using the original and feature re-
duced matrices, respectively. Their results are denoted by the blue

Table 2

PMCI classification accuracy using multi-modal data of a single
time point (18™ month from baseline). An [;-norm error term is
used in ILRR. [Bold: Best result; *: statistically significantly differ-
ent result compared with the best result (same for all the other
Tables in this paper)].

Data modal Baseline [E[l; in LRR
MC FMC DMC FDMC DFMC
MRI 0.686* 0.706* 0.726  0.715 0.720
MRI+PET 0.686* 0.700* 0.724 0.737 0.726
MRI+Cli 0.764* 0.770* 0.827 0.821 0.828
MRI+PET+Cli 0.745* 0.768* 0.792 0.812 0.802
Table 3

pMCI classification accuracy using multi-modal data of a single time
point (18th month from baseline). An ,-norm error term is used in

ILRR.
Modality Baseline |[E||2 in LRR
MC FMC DMC FDMC DFMC
MRI 0.686* 0.706 0.709 0.718 0.719
MRI4PET 0.686*  0.700*  0.726 0729 0.724
MRI+Cli 0.764* 0.770* 0.808 0.807 0.809
MRI+PET+Cli 0.745* 0.768* 0.778* 0.800 0.787

boxes in Fig. 3. On the other hand, the red boxes in Fig. 3 are used
to denote the results of the proposed methods that contain LRAD,
i.e.,LRAD-MC, FS-LRAD-MC, and LRAD-FS-MC, represented by DMC,
FDMC, and DFMC, respectively.

It can be observed from Fig. 3 that the LRAD improves the di-
agnostic accuracies (i.e., the red boxes are generally higher than
the blue boxes). Generally, when LRAD is employed after feature
selection, we observe some improvements (comparing FMC with
FDMC), especially for MRI+PET, MRI+Cli, and MRI+PET+Cli. In con-
trast, when feature selection is employed after LRAD, the improve-
ment is not obvious (comparing DMC with DFMC), since using
LRAD alone has already significantly improved the accuracy (com-
pare MC with DMC). However, performing feature selection after
LRAD can reduce the computation cost because LRMC is applied
on a smaller matrix. Similar conclusions can be drawn based on
AUC (see Fig. 4).

5.5. Cross-sectional study: influence of regularization

We evaluated the effects of two types of regularization, i.e.,
the l;-norm and the l,-norm, which make different assumptions
about the data noise. For the Il;-norm, the data are assumed to
be corrupted by sparse noise, which could be caused by any of
the preprocessing steps, e.g., segmentation or ROI alignment errors.
For the l,-norm, the data are assumed to be corrupted by Gaus-
sian noise. Tables 2 and 3 show the pMCI/sMCI classification re-
sults using multi-modal data of time point T4, with LRAD using
an l-norm (||E||;) or an l,-norm (||E||;) error term. Both tables
show that the prediction of LRMC improves with LRAD. We fur-
ther perform paired t-test between the best result and the other
results in each category, and mark the statistically significant re-
sults (p < 0.05) with asterisks (*). Comparing the results from both
tables, the l{-norm gives greater improvement than the l,-norm,
implying that the former gives a better denoising outcome.

5.6. Longitudinal study: prediction of diagnostic labels using
multi-modal and longitudinal data

Table 4 shows the results using multi-modal and longitudinal
data, when the [;-norm error term is used in LRR. Four time points
are used in this experiment, namely time point 1, 2, 3 and 4, corre-
sponding to the data acquired at baseline, 6th month, 12th month,
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Fig. 2. Flow chart of the proposed methods in comparison with the baseline methods. The two baseline methods are LRMC and FS-LRMC, which are respectively abbre-
viated as MC and FMC. The proposed methods that utilize low-rank affinity pursuit denoising (LRAD) are LRAD-MC, FS-LRAD-MC, and LRAD-FS-MC, which are respectively

abbreviated as DMC, FDMC, and DFMC.
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Fig. 3. Boxplots of pMCI classification accuracies using different combinations of modalities. MC, FMC, DMC, FDMC, and DFMC denote the abbreviations used for LRMC,
FS-LRMC, LRAD-MC, FS-LRAD-MC, and LRAD-FS-MC, respectively (as shown in Fig. 2). Each boxplot summarizes the results of 10 repetitions of 10-fold cross validation. The
blue and the red boxes denote the results given by the LRMC without and with the LRAD, respectively. The boxes with darker colors are the results given by the LRMC with
feature selection. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

and 18th month, respectively. Time point 4 (T4) is used as our ref-
erence time point since it is the latest time point and gives us
the most current state of the subject. As shown in our previous
work (Thung et al.,, 2015a, 2015b), predictions using longitudinal
data with 2 time points are generally better than using one time
point. Hence, we test our method using 2 time points, i.e., the ref-
erence time point (T4) plus an additional historical time point data.

For example, in Table 4, T, ¢ indicates that the data of T4 and T,
are used. From the table, it can be seen that LRAD improves pre-
diction performance, for almost all combinations of modalities and
time-points. The only case where the proposed method performs
slightly worse than the baseline is MRI+PET+Cli-T4 3. The differ-
ence is, however, not statistically significant. The highest accuracy
achieved by the proposed method is 84.0% for the case of MRI+Cli-
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Fig. 4. Boxplots of pMCI classification AUC using different combinations of modalities.

Table 4
Classification accuracy using longitudinal and multi-modal data. An l;-norm error
term is used in LRAD.

Table 5
Classification accuracy using longitudinal and multi-modal data. An l,-norm error
term is used in LRAD.

Modality Time Baseline IE[l; in LRAD Modality Time Baseline [E[|2 in LRAD
points  MC FMC DMC FDMC DFMC points  MC FMC DMC FDMC DFMC
MRI Ty 0.686*  0.706*  0.726 0.715 0.720 MRI Ty 0.686*  0.706*  0.709 0.718 0.719
T 1 0.713* 0.716*  0.748 0.743 0.756 T 1 0.713*  0.716*  0.734 0.738 0.740
Ts 2 0.702*  0.694*  0.734 0.719 0.729 Ts 2 0.702*  0.694*  0.723 0.725 0.723
Ty 3 0.706*  0.698*  0.727 0.731 0.728 Ty 3 0.706*  0.698*  0.716 0.728 0.726
MRI + PET Ty 0.686*  0.700*  0.724 0.737 0.726 MRI + PET In 0.686*  0.700*  0.726 0.729 0.724
T4t 0.688*  0.701*  0.711 0.720 0.723 T 1 0.688*  0.701*  0.699*  0.721 0.706
Ts 2 0.682*  0.699 0.665*  0.708 0.679* Ts 2 0.682*  0.699*  0.682*  0.722 0.700*
Ty 3 0.705 0.714 0.721 0.702 0.720 Ty 3 0.705 0.714 0.703 0.718 0.716
MRI + Cli In 0.764+  0.770*  0.827 0.821 0.828 MRI + Cli In 0.764*  0.770*  0.808 0.807 0.809
Ta 1 0.790*  0.791*  0.840 0.805*  0.839 Ta 1 0.790*  0.791*  0.820 0.800*  0.821
Ta 2 0.771*  0.773*  0.803 0.802 0.807 Ts, 2 0.771*  0.773*  0.798 0.790*  0.802
T 3 0.809*  0.809*  0.832 0.826 0.825 Ts 3 0.809*  0.809*  0.822 0.826 0.816
MRI+PET +Cli Ty 0.745*  0.768*  0.792 0.812 0.802 MRI+PET +Cli Ty 0.745*  0.768*  0.778 0.800 0.787
Ta 1 0.765 0.760*  0.753*  0.777 0.755* Ta 1 0.765 0.760*  0.769 0.782 0.767
Ty 2 0.730*  0.759 0.736*  0.767 0.757 Ty 2 0.730*  0.759 0.743*  0.770 0.743*
Ts 3 0.788*  0.808 0.789 0.796 0.800 T 3 0.788*  0.808 0.798 0.798 0.809

T4 1. Similar observations can be made when the l,-norm error
term is used in LRAD (See Table 5), even though the Il;-norm is
generally better than the l;,-norm in this application.

5.7. Cross-sectional study: prediction of conversion time using
multi-modal single time point data

Figs. 5 and 6 show respectively the PCC and SROCC results
computed between the predicted conversion time and the ground-
truth conversion time, using different combinations of multi-modal
data of the reference time point. As shown in both figures, the per-
formance of LRMC has been significantly improved with LRAD and
feature selection. The best PCC of 0.665, which is about 10% higher
than the original LRMC method, is achieved when using MRI data

and clinical scores with the proposed framework LRAD-FS-LRMC.
Similar results can be observed for coefficient determination (or R?
scores), as shown in Fig. 7.

5.8. Longitudinal study: prediction of conversion time using
multi-modal and longitudinal data

Table 6 shows the PCC values of the predicted conversion times
using different combinations of longitudinal and multi-modal data.
As can be seen from the table, the proposed methods (last 2
columns) perform best in all settings. Particularly, for a smaller
feature dimension, LRAD-FS-MC (column DFMC) performs better
(e.g., MRI, MRI+Cli at T4). For a larger feature dimension, FS-LRAD-
MC (column FDMC) performs better (e.g., MRI+PET, MRI+PET+Cli).
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Table 6
PCC of MCI conversion time predictions using longitudinal and multi-modal
data. An [;-norm error term is used in LRR.

Modality Time  Baseline |lE||; in LRR
MC FMC DMC FDMC DFMC
MRI Ty 0.462*  0.480*  0.540*  0.550 0.560
T 0.423*  0476* 0437  0.528 0.509
Ts 0.440* 0459 0451*  0.524 0.504
Tz 0.426*  0.41* 0.463*  0.511 0.521
MRI+PET Ty 0.512*  0.531* 0454 0.568 0.550*
Ta 0.415* 0.502* 0448  0.533 0.512*
Tar 0.452*  0475* 0431* 0513 0.503
Tz 0.442* 0485 0467*  0.522 0.491*
MRI+Cli Ty 0.566*  0.594*  0.643* 0.639* 0.665
Tu 0.552*  0.582*  0.605 0.587 0.607
Tay 0.553*  0.617* 0.593*  0.643 0.626*

Ta3 0.576* 0.622 0.610 0.626 0.619

MRI4+PET+Cli T4 0.558*  0.610* 0.556*  0.643 0.633
Ty 0.579* 0.607 0.537* 0.612 0.596*
Ts 0.471* 0.598*  0.569* 0.616 0.621

Ta3 0.566*  0.623 0.597* 0.631 0.621

The best performance is obtained when using MRI+Cli at T4, which
gives us an average PCC value of 0.665. Similar observations can be
obtained for SROCC, as shown in Table 7, and R? scores, as shown
in Table 8. Thus, the rule of thumb is to choose LRAD-FS-MC when
the feature dimension is smaller and less noisy, and choose FS-
LRAD-MC when the feature dimension is bigger and noisier.

5.9. Discussions

Comparing the results of MRI+PET+Cli and MRI+Cli, especially
referring to Table 4, it seems that there is a drop in performance
when additional PET data is used. There could be several possible
reasons behind this observation, including the small sample size

Table 7
SROCC of MCI conversion time predictions using longitudinal and multi-
modal data. An [;-norm error term is used in LRR.

Modality Time  Baseline |IE|]; in LRR
MC FMC DMC FDMC DFMC
MRI Ty 0463 0476 0536  0.548  0.557
Ta 0420 0472 0433  0.516 0.506

Ta 0440 0457 0446  0.523 0.506
Ta3 0432 0403 0465 0.499 0.536

MRI+PET In 0492 0524 0446  0.554 0.551
s 0400 0498 0444 0514 0.506
Ta 0442 0485 0417 0.519 0.505
Tas 0446  0.481 0.465  0.521 0.481

MRI+Cli Ty 0.561 0.578 0.631 0.625 0.661
Ta 0526 0568 0579  0.568 0.599
Tay 0543 0.605 0593 0.635 0.613
Tas 0563 0.620 0593 0.624 0.608

Ty 0.537 0.600 0.541 0.636 0.615
Ta 0555 0594  0.517 0.597 0.579
T 0.462  0.581 0.555  0.602 0.612
Tas 0566  0.613 0.591 0.622 0.609

MRI+PET+Cli

of the data. This is because the number of samples being used is
much less than the number of features. The number of samples
used in this study is 118, which is relatively small compared to the
number of features (93 for each modality at each time point). Dur-
ing training, cross-validation uses an even smaller data subset for
feature selection, resulting in instability especially in the presence
of outliers and missing data. For the ADNI dataset we used in this
study, PET data are not available for half of the samples, whereas
clinical cognitive scores and MRI are relatively complete. The rela-
tively smaller number of samples with PET data makes prediction
using PET less reliable. We use the results in Table 4 as an exam-
ple, where columns (c) and (d) refer respectively to our proposed
method without and with feature selection. It can be seen that,
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Table 8
R? scores of MCI conversion time predictions using longitudinal and multi-
modal data. An [;-norm error term is used in LRR.

Modality Time  Baseline IIE[l1 in LRR
MC FMC DMC FDMC DFMC
MRI Ty 0.111 0.172 0.231 0.243 0.250
Ta 0.100 0.161 0.092 0.221 0.197

T 0.118 0.136 0.090 0.216 0.175
Tas 0.094 0.104 0.100 0.201 0.208

MRI+PET Ty 0.175 0.215 0.122 0.263 0.245
Ta 0.105 0.188 0.121 0.216 0.196
T 0.124 0.144 0.117 0.208 0.182
Tas 0.117 0.163 0.124 0.209 0.179

MRI+Cli Ty 0.191 0307 0.340 0.346 0.369
Ta 0222 0.287 0.282  0.300 0.307
T 0220 0320 0.244 0.346 0.320
Tas 0239 0325 0270 0.325 0.321

MRI+PET+Cli Ty 0.190 0308 0.224 0344 0.336
Ty 0.261 0294 0209 0312 0.292
Ty 0.140 0287 0219 0.316 0.305
Tas 0243 0323 0268 0.333 0.319
Table 9

PMCI classification accuracy using multi-modal and longitudinal data, compar-
ison of results with other methods.

Modality Time iMSF Ingal Proposed
LogisticR  LeastR FDMC  DFMC
MRI Ty 0.683 0.678 0.620 0.715 0.720
Ty 0.681 0.686 0.690  0.743 0.756
Ts 0.690 0.694 0.643  0.719 0.729
Tys 0.663 0.650 0614  0.731 0.728
MRI+PET Ty 0.687 0.684 0.680 0.737 0.726
Ta 0.658 0.654 0.721 0.720 0.723
Tay 0.685 0.706 0.675  0.708 0.679
Ty 0.676 0.654 0.705  0.702 0.720
MRI+Cli Ty 0.792 0.766 0.771 0.821 0.828
Ty 0.794 0.784 0.768  0.805 0.839
Tay 0.800 0.789 0.772  0.802 0.807
Tas 0.834 0.830 0.787  0.826 0.825
MRI4PET+Cli Ty 0.787 0.764 0.777  0.812 0.802
Ty 0.802 0.797 0.691 0.777 0.755
Ty 0.811 0.810 0.727  0.767 0.757
Tas 0.832 0.806 0.717 0.796 0.800

with feature selection, MRI+PET and MRI+PET+Cli are better than
the methods without feature selection, which to some extent veri-
fies our expectation that removing outlier features in the PET data
would improve prediction performance.

5.10. Comparison with other methods

In addition, we also compared our method with the methods
proposed in (Yuan et al, 2012; Ingalhalikar et al., 2012). Some
modifications were made to the method in (Yuan et al., 2012), so
that it can be applied to our multi-modal and longitudinal dataset,
as described in Section 5.2. The results in Table 9 indicate that the
proposed method outperforms these state-of-the-art methods for
MRI, MRI+PET and MRI+Cli longitudinal data. For MRI+PET+Cli, the
proposed method is still the best when data from a single time
point is used, but does not perform as well as iMSF when more
time points are used. It is worth noting that this iMSF result is
obtained after our improvement modifications, the original iMSF
algorithm can not handle so many missing patterns in the lon-
gitudinal multi-modal data. Nevertheless, this also likely indicates
that a better feature selection method is needed for the proposed
framework to further improve performance. As we are focusing on
LRAD in this work, we left this as our future work. Similar obser-

Table 10
PCC of pMCI conversion time predictions using multi-modal and longitudinal
data, comparison of results with other methods.

Modality Time iMSF Ingal Proposed
LogisticR  LeastR FDMC  DFMC
MRI Ty 0.464 0.567 032 0.55 0.56
Ty 0.432 0.520 0.281 0.528 0.509
Tay 0.445 0.474 0326  0.524 0.504
Ta3 0.397 0.493 0307  0.511 0.521
MRI+PET Ty 0.499 0.494 0392 0.568 0.5
Ta 0.407 0.493 0.37 0.533 0.512
Tay 0.502 0.507 0364 0.513 0.503
Ta3 0.442 0.447 0395  0.522 0.491
MRI+Cli Ty 0.577 0.654 0.543  0.639 0.665
Ty 0.565 0.588 0523  0.587 0.607
Tay 0.604 0.638 0.45 0.643 0.626
Taz 0.653 0.651 0.48 0.626 0.619
MRI+PET+Cli Ty 0.578 0.621 0.491 0.643 0.633
Ty 0.621 0.584 0429 0.612 0.596
Tay 0.638 0.617 0333 0.616 0.621
Taz 0.632 0.657 0352  0.631 0.621

vation can be obtained for the PCC metric, as shown in Table 10.
The best classification and conversion time prediction accuracy for
these two tables are still achieved by the proposed LRAD-FS-MC,
using MRI and clinical data, at the value of 0.839 and 0.665, re-
spectively.

6. Conclusion

In this study, we have proposed a series of algorithms based
on subspace methods to address two very important questions
on AD study - which MCI subject will progress to AD and when
it will occur. Our framework is one of the few studies that ad-
dresses these queries jointly using incomplete multi-modal and
longitudinal neuroimaging and clinical data. Our framework con-
sists of three main components, i.e., sparse feature selection, low-
rank affinity pursuit denoising (LRAD), and low-rank matrix com-
pletion (LRMC), in addition to efficient Bayesian hyper-parameter
optimization. We have demonstrated that the LRAD is able to im-
prove the LRMC-based predictions, either in terms of the diag-
nostic labels or the conversion time predictions using MCI data.
We use LRAD to denoise heterogeneous multi-modal neuroimaging
and clinical data by self-representing the data with the neighbor-
ing data. The LRAD with the l;-norm regularization performs better
than the LRAD with the l,-norm regularization, indicating that the
data we used contain more likely sparse noise rather than Gaus-
sian noise. On the other hand, we have modified the original ma-
trix completion algorithm by introducing three data fitting terms
and one inequality constraint to predict conversion and time-to-
conversion jointly. The added inequality constraint has made the
conversion time prediction of the censored sMCI data possible. In
addition, we used Bayesian optimization to efficiently search for
the optimal set of hyper-parameters for our proposed framework.
Extensive evaluations also indicate that the proposed method out-
performs the conventional LRMC in various settings, as well as a
number of state-of-the-art methods.
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